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ABSTRACT

The final report on research into adaptive optical linear algebra processors includes 3

processors. These include: a space integrating frequency-multiplexcd processor, a hybrid space

and time ntegrating processor, and a heterodyned linear algebra processor. We also address

number representation work using twos complement and negative base representation, plus

fundamental new concepts such as matrix and bit partitioning.
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ADAPTIVE OPTICAL LINEAR ALGEBRA PROCESSORS
w

Final Report on
AFOSR Grant 84-0239

CHAPTER 1. INTRODUCTION

In this final report on this grant, we highlight our recent results of the last year. The

thrust of the work on this grant addressed optical linear algebra processors with attention to

their laboratory realization. We have demonstrated and fabricated three optical processors in

the laboratory. These include: (1) a space integrating and frequency multiplexed system, (2) a

space and time integrating architecture, and (3) an analog heterodyned processor. We have

demonstrated these systems on diverse applications: the solution of parabolic differential

equations, finite element problems, computational fluid dynamics, and adaptive phased array

radar. A new iterative Fourier transform processor concept was also addressed. Finally, we

advance a new case for high-accuracy optical matrix processors versus digital versions of these

systems.

Chapter 2 reviews our first system and lab data on its use in the solution of parabolic

differential equations. Chapters 3 and 4 detail the final ac-coupled version of the second system

fabricated and its use in finite-element problems. Chapters 5 and 6 address its use in the

solution of problems in computational fluid dynamics and adaptive phased array radar. Chapter

7 demonstrates its use in bit-partitioning to achieve any desired accuracy with no increase in

hardware. Chapters 8 and 9 present data and adaptive phased array radar. Chapter 11

advances new reasons why an optical high-accuracy matrix processor is superior to a digitsl

realization.

This grant has successfully advanced many new theoretical results in new number



representations, bit partitioning to achieve any desired accuracy, matrix partitioning to handle

matrices of any size, and a wealth of new algorithms. It has also resulted in four new

architectures, laboratory data on three of these, and real time laboratory optical solutions for

five diverse Rpplications in linear algebra. Chapter 12 lists the 33 journal and conference papers

published under this grant, the 29 presentations given under it and the 6 student theses it

supported. This represents excellent results and documentation of our research on this grant.
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CHAPTER 2:

REAL-TIME OPTICAL LABORATORY SOLUTION
OF PARABOLIC DIFFERENTIAL EQUATIONS
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Real-time optical laboratory solution of
parabolic differential equations

David Casasent and James Jackson

An optical laboratory matrix-vector processor is used to solve parabolic differential equations (the transient
diffusion equation with two space variables and time) by an explicit algorithm. This includes optical matrix-
vector nonbase-2 encoded laboratory data, the combination of nonbase-2 and frequency-multiplexed data on
such processors, a high-accuracy optical laboratory solution of a partial differential equation, new data
partitioning techniques, and a discussion of a multiprocessor optical matrix-vector architecture.

I. Introduction forms the sum of each point-by-point product land
Many optical matrix-vector processors have been hence the vector inner product (VIP) of the P, data

described,' but few have been fabricated, and limited and the P2 data on separate output detectors at P31.
laboratorv data on the use of these systems in practical We typically employ different LD rows at P1 and the

- engineering problems have been presented. Section i frequency-multiplexing at P2 to represent bipolar and
reviews the well-engineered optical laboratory archi- complex-valued data. New data are fed to P and P2
tecture used in our present studies. Section III dis- each bit time TB. For the present laboratory system,
cusses our case study, the algorithm used, the parti- TB = 250 ns and five input LDs are used, although the
tioning employed, and the encoding used. Section IV system can support a much higher data rate and more
presents laboratory data obtained. A summary and LDs per row. With the P, data being an encoded
conclusion are then advanced in Sec. V. Optical ma- representation of a number that is unchanged for the
trix-vector processors represent the basic elements of aperture time of the AO cell and with the input AO cell
many optical neural networks and adaptive proces- data being another encoded word, the P3 output is the
sors and are thus of considerable interest. convolution of the bits of the two data words. By thedigital multiplication by analog convolution (DMAC)

II. Optical Laboratory Matrix-Vector System algorithm,415 this P:, output correlation function is the
The optical processor considered is shown in Fig. 1. high-accuracy product of the two corresponding input

Its fabrication and operation have been discussed else- words (in mixed radix representation). This is the
where, ' and thus only a brief review of the system is manner by which this processor achieves high-accura-
given here. The system consists of several linear laser cy vector inner product operations. As noted else-
diode (LD) point modulator arrays at Pl. These are where,6 the DMAC algorithm can be used with vector
imaged onto an acoustooptic (AO) cell at P2 . The AO data encoded in any base. Thus this architecture is
cell is fed with three frequency-multiplexed input sig- quite versatile and has been optically realized in the
nals. The 1-D vector data in each row at P, multiply laboratory.I In earlier work,7 we demonstrated the
the three vectors (frequency multiplexed) in the AO laboratory performance of this system in the solution
cell point by point, and the output integrating lens of a nonlinear matrix equation using the system in an

analog mode and with an iterative algorithm employed
to solve a system of linear algebraic equations. Here
we consider its laboratory performance in an explicit
solution of a parabolic partial differential equation

When this work was done both authors were with Carnegie Mellon (PDE). This present application requires that the
Lniversity, Dl)epartment of Electrical & Computer Engineering, system be operated in its high-accuracy mode on en-
Center for Excellence in Optical Data lrocessing. Pittshurgh. Penn- coded data and thus that it employ the DMAC algo-
sy I'ania 15213;-. Jackson is now with Westinghouse Electric Cor mo-rati,. Baltimore, Maryand. rithm. Analog solutions to PDEs have been demon-

rec .ied :1 Aigus 19-1d strated on other optical architecturesm hut not to high

1H34:t.-t/iSt/142022-04502.(t1/0. accuracy and not with matrice- with a high condition
c 148 Optical Scicty of America. number.
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Fig. 1. Simplified schematic of the space integrating optical linear algebra processor.

61l. Case Study v *I = Au". (6)
The problem we consider is the solution of the tran-

sient diffusion equation with two spatial variables plus where the matrix A is tridiagonal with all main diago-time:nal elements being (1 - 2A) and with the elements
time: directly above and below the main diagonal being X.

u, = 0(u, + u,), (1) For the 2-D problem in Eq. (1), the finite difference

where subscripts denote partial derivatives with re- approximations yield

spect to time t or space (x or y), e.g., u, denotes the U(7) = + , + x
second partial derivative ofu in x. Weassumethatthe
thermal diffusivity a is constant (as is typical of an Using standard procedures,' ° " we can describe Eq. (7)
isotropic time-variant medium), although the exten- as a matrix-vector problem by ordering the N2 ele-
sion to the nonisotropic cage is straightforward with a ments of uij (assuming N X N spatial elements in x and
becoming a function of (xy). Our purpose is to deter- y) at any time as an N'2-dimensional vector u. With Ax
mine the 2-D temperature distribution u in x and y as a = Ay, the solution for the spatial temperature distribu-
function of time t. This involves the calculation of tion at time n + I is related to that at time n by an
U(x,y,tn) and its use to compute u(xy,t,+1 ) at the next equation of the form of Eq. (6). However, the vector u
time instant. Two types of problem formulation are and the matrix A are now of dimension Nr, and the
possible, explicit matrix-vector and implicit linear al- matrix A now has multiple bands. Specifically, the
gebraic equation solutions. From a study of both pos- central three diagonals are nonzero, and the diagonal
sibilities,9 we selected the explicit solution, because the elements N - I elements above and below the main
banded nature of the matrix is preserved and because a diagonal are nonzero with all other elements being
fixed numberofcalculations can be specified. We now zero. In other partial differential equation problems
detail our explicit problem formulation and solution. and when higher-order difference approximations are

used, more nonzero diagonals will occur 2N - 1 ele-
A. Explicit Algorithm ments from the main diagonal and the bandwidth of

We denote the space x,y indices by subscripts ij and each diagonal band will increase. However, the basic
the time index by a superscript n, i.e., u5 +' is multibanded matrix structure remains and is a charac-
ujiAxjAy,(n+1)At], where Ax, Ay, and At are the teristic feature of the matrix descriptions of many
space and time step sizes used. We approximate ut partial differential equation problems. Thus the gen-
with a forward difference (forward Euler approxima- eral problem to be solved requires the matrix-vector
tion) as multiplication in Eq. (6) for a multibanded matrix as

= ( - U (2) described above. This matrix-vector multiplication
, ,' . must be performed to obtain u(x,y) at each time step n

A double central difference in x (index i) is used to and the results from the previous time step calculation
approximate the second derivative u,, as used to compute the value of u(x,y) at the next time

u_ = [u,. , - 2u:" + u A jjl(Ax)
2. (3) step n + 1.

with a similar approximation used for u,,. For the 1-D B. Case Study
problem u, = au,, the finite difference description The case study chosen was the solution of the 2-D
becomes diffusion equation for a 10- X 10-cm 2 aluminum plate

= )w, + (I - 2M" +X, (4) with a = 0.86 cm 2/s. The plate was divided into 11 X

11 = 121 = A12 square elements. The boundary condi-
where tions were zero temperature for the forty edge bound-

= ,/ . ary points. For stability, we require A < 0.5 and thus
choose time steps It = 0.29 s. At each time step n, we

This shows how the temperature at time step n + I require calculation of the temperature u in Eq. (6) for
depends explicitly on the prior temperature at time the AN2 - 40 = 81 internal spatial points (i,j). The
step n and constants. Denoting the spatial solution specific A matrix, including boundary conditions, con-
for all i at time step n as the vector u", then sists of N x N submatrices (each A' X N. The top left

15 July 1988 / Vol. 27. No. 14 / APPLIED OPTICS 2923
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and bottom right submatrices are the identity matri-
ces. The main diagonal submatrices are tridiagonal
with all main diagonal elements equal to y = I-4X and _,_

- with the diagonals one element above and below the
main diagonal having entries X = _yAt/(At) 2. The ma-
trices one block from the main diagonal are also diago-
nal matrices with all nonzero elements equal to X. All Fig. 2. Multiprocessor architecture for multiple banded matrices.
other submatrices are all zero. Thus there are only
five nonzero elements in any row of the N 2 x N2 matrix
A. Our data flow and partitioning technique will ex-
ploit this matrix structure. We will consider the tern- quires only one optical processor (with a modest num-
perature output for forty time steps to demonstrate ber of input laser diodes). In this partitioning scheme,
the explicit algorithm. We find that errors in the the nonzero matrix data A are fed to the AO cell, and
computed un at time step n will propagate into the the proper elements of the vector u are input to P, as
calculated u1+1 temperature distribution. This pro- required. This arrangement is also very attractive for
cess will continue, and errors will accumulate and data flow and all modest-sized problems. For the
make subseq ient results meaningless, unless we em- present case study problem, the data in each row of the
ploy encodec; data and the DMAC algorithm to achieve matrix are the same, and thus the AO inputs at P2 are a
high accura :y. fixed set of five entries that are cyclically repeated. If

a is not constant, the AO inputs change slowly with
C. Data F Yw and Partitioning time, and this is easily achieved. Selection of the five

At each time step n, the calculations in Eq. (6) re- elements of the vector u to the input to PI each TB is
quire N 2 - 40 = 81 VIPs (ignoring the boundary ele- easily achieved. 9 For example, the expression for the
ments). Since each row of A has only five nonzero five u vector elements fed to P at time n to calculate
elements, each VIP requires attention to at least five the matrix element u2.2 at time n + 1 is given by
elements of A (as a minimum). The data flow and -

partitioning provided by our processor allow us to 2.2 = + + (1 - Wun2 + XU2. + "71. (8)
achieve each VIP using only the aforementioned mini- Extensions to the general element u, are easily ob-
mum number of operations. Many architectures tained and allow optimal data flow. This was the
(both optical and digital and systolic arrays) cannot partitioning and data flow we employed in our present
easily achieve such data flow. We now describe how laboratory tests. This partitioning arrangement al-
the optical system of Fig. 1 can accommodate the pro- lows us to solve a banded matrix problem whose size
posed problem. (121 X 121) exceeds that of the processor (five point

For the case of a general multiple-banded matrix modulator channels). Additional matrix bands can be
problem, the architecture of Fig. 2, using multiple handled similarly and partial matrix-vector products
optical processors, is preferable. In this system, we easily updated.
represent the processor of Fig. 1 by the LD/AO/DET
box shown. We employ diagonal partitioning and feed IV. Optical Laboratory Data
the central three nonzero diagonal elements of the We first operated the optical laboratory system in
main block diagonal matrix sequentially to three LDs the analog mode and found that after ten time steps,
in tle first processor and the diagonal elements of the the error in the computed temperature distribution
off-diagonal block submatrices to the LDs of subse- was unacceptable (being above 2%). We thus em-
quent processors in the cascade shown. The input ployed only encoded high-accuracy operation of the
vector data are delayed [by an amount, typically (N - system. We used different bases B in the DMAC
1)T1, dependent on the block structure of the matrix algorithm for the first time on this laboratory system.
A] and fed to the next processor in the cascade. The With B = 5 and with five digits of data, we achieve a
output vectors from each processor are collected and data dynamic range of (B - 1)5 = 2 5 or 15-bit accuracy.
yield the final matrix-vector product. Thus, in this We ran the PDE problem on the optical system for
multiprocessor architecture, separate optical proces- forty time steps with the system operated in bases 2, 3,
sors handle different matrix bands in the block matrix 4, and 5. In the first three tests, no errors were ob-
description. Data flow is ideal, with the general archi- tained, and performance was perfect. (Each test in-
tecture being quite suitable for all multiple-banded volved nearly 1.6 million multiplications and addi-
matrix-vector problems. For the present problem, we tions.) In tests with base 5, after 40At, we obtained an
would require a cascade of three such processors with average error of 0.02% in the calculated u(x,y) distribu-
no processor requiring more than three laser diode tion. This is attributed to component errors exceed-
point modulators. ing the separation between levels in the output A-D

Although the architecture of Fig. 2 is quite general converter. Thus, for the present hardware, we are
and versatile, for most finite difference and finite ele- restricted to operate no higher than base 4. We then
ment problems, the number of nonzero matrix ele- operated the system frequency-multiplexed with base
ments per row is quite modest, and a different data 3 encoding and obtained perfect results again. This
flow and partitioning technique can be used that re- represents the first successful operation of thi.s optical

2924 APPLIED OPTICS / Vol. 27, No. 14 / 15 July 1988



V. Summary and Conclusion
This paper has detailed an explicit algorithm to

_solve parabolic differential equations, specifically the
diffusion equation, for the temperature distribution
with two spatial variables and one temporal variable.
This paper represents new optical linear algebra lab-
oratory data results in the solution of a practical engi-

0 a..4E... t - neering problem, specifically the use and demonstra-
tion of nonbase-2 encoded data, the solution of a PDE
(the diffusion equation), and the use of nonbase-2
frequency-multiplexed data encoding. We also ad-
vanced and demonstrated (on a laboratory system)
new partitioning techniques and how a multiple opti-
cal processor architecture could be used for solving
multiple-banded matrix problems.
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CHAPTER 3:

OPTICAL MATRIX-VECTOR LABORATORY DATA
FOR FINITE ELEMENT PROBLEMS



Optical matrix-vector laboratory data
for finite element problems

B.K. Taylor and D.P. Casasent
Carnegie Mellon University

Center for Excellence in Optical Data Processing
Department of Electrical and Computer Engineering

Pittsburgh, Pennslyvania 15213

ABSTRACT

We detail the use of an optical linear algebra processor for a finite element processing application. A
linear time-varying structural mechanics finite element earthquake case study is described. The structure
response under earthquake loading is considered, and the solution is obtained with the Newmark direct
integration algorithm. The optical architecture for performing the required computationally burdensome
banded matrix-vector operations is reviewed. The case study was solved on a laboratory version of the
optical processor, and the results are presented.

1 INTRODUCTION

Finite element analysis is one of many scientific computing applications that require an enormous
number of linear algebra (matrix-vector) computations. Many specialized optical linear algebra proces-
sors have been proposed to provide fast processing for many such applications [1,2]. This paper illustrates
the use of a specific optical processor [3] that is well-suited to handle the computational tasks of a linear
dynamic structural mechanics finite element analysis problem. The solution of a static structural me-
chanics finite element analysis has been described previously [4,53. Few laboratory results from optical
computing systems have been presented. Thus, our laboratory results with a reduced implementation of
the processor as a proof-of-principle demonstration are quite unique. We first review the optical linear
algebra processor architecture and discuss partioning and data representation issues (Section 2). Next,
we present our finite element analysis case study formulation (Section 3), and the time-stepping New-

mark solution algorithm that is used for the case study (Section 4). The laboratory system is described
and the laboratory solution results are then examined (Section 5).

2 OPTICAL LINEAR ALGEBRA PROCESSOR

The optical linear algebra processor architecture that we consider in this paper is shown in Figure
1. The processor uses M laser diodes as point modulators at P1. Each point modulator is imaged onto
a corresponding vertical region of a multi-channel acousto-optic (AO) cell at P2. The light distribution
leaving P2 is spatially integrated vertically onto a linear detector array at P3 . Each output detector
is followed by an A/D converter and a shift/accumulator register to provide time-integration at P3 .

This optical computing architecture was first described several years ago [3], and its initial laboratory
implementation has been previously presented [6]. Thus, the following descriptions of the processor
operation, partitioning, and data representation will be brief.

The optical linear algebra processor is capable of achieving high-accuracy optical matrix-vector op-
erations as follows. We consider only one of the 'M vertical processor channels for multiplying two N-bit

1.
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numbers. The digitally encoded bits of the multiplier are fed sequentially to the P point modulator, ad
the bits of the multiplicand are fed word parallel to the AO cell at P2. The word parallel multiplicand
bits are present in one vertical processor channel section of the AO cell for a time T2. During each T2,
the corresponding P'2 point modulator is pulsed on evere e with one of the bits of the multiplier. Eah
PI point modulator is pulsed on iN times every T2, thus NTI = T2. Each TI, one bit of the multiplier "
is multiplied by all N bits of the multiplicand and the output scalar-word product is imaged onto the N
detectors at P3. The P3 data is shifted every TI, and the scalar-word product for the next T, is formed
and added to the prior (shifted) P3 data. Thus, P3 accumulates partial products of the multiplication
result. After T2 = ANTI, the ]3 output is the mixed radix representation of the product of the multiplier

and multiplicand. When all M channels are considered, M scalar multiplications of different number
pairs are performed every T2 in the processor. Thus, an lI-element vector inner product (VIP) is com-
puted on the processor each T 2 by space integration. The mixed radix output is easily converted to
conventional binary by A/D conversion and shift/adds of successive digits as they are shifted out of P3

every T 1 . This is known as the digital multiplication by analog convolution (DMAC) algorithm [7-9].

This architecture performs banded matrix vector products very efficiently [3]. In this algorithm, the
contents of M diagonals of the matrix are fed to the M point modulators at P1 . For banded matrices, no
out-of-band zero diagonals are processed. The vector elements are fed to the P2 AO cell and reused in a
systolic fashion in all M processor channels. Likewise, matrix partitioning [3] is easily achieved on this
system when matrix bandwidths and vector lengths are larger than M. The matrix is then partitioned

into diagonal ribbons, M diagonals are processed at one time, and the results for all diagonals are
accumulated. With this partitioning technique, data flow and bookkeeping are simplified, and processor
dead time is minimized.

2.
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If the number of desired encoding bits N6 is larger than the number of available AO cell channels N
at P2 and P3 , bit partitioning [6] is also easily implemented. Since there are no carries in DMAC until
mixed radix to binary conversion, we simply process the first N bits of the multiplicand, store the results,
process the next N bits, etc. [6] Thus any desired accuracy may be achieved with only N channels at P2

and P3 .

Many techniques for representing bipolar data on optical numerical processors have been presented
[10-14] Our processor can be operated using a negative base representation for bipolar data [14]. This
method handles negative numbers efficiently without requiring a significant number of extra bits, addi-
tional processing, or time or space multiplexing. Finally, we note that the DMAC algorithm is valid for
data encoded in any radix (3]. The use of higher radices significantly increases computational throughput
within A/D output P3 converter limits.

3 FINITE ELEMENT CASE STUDY

This section details the case study using the notation that boldface uppercase letters represent square
matrices, and boldface lowercase letters represent column vectors. The case study is a linear dynamic
finite element structural mechanics problem. The plane frame structure model in Figure 2 is used,
and the effects of simulated earthquake loadings applied to this structure are analyzed by our optical
laboratory system. The structure is modeled with standard beam elements [15). There are 11 nodes
with 3 degrees-of-freedom at each node (displacement in x and y, and rotation about z).

3.



Dynamic analysis [16] of the structure in Figure 2 requires solution of the matrix equation

Md + CA + Kd = p(t), (1)

where M, C, and K are the 33 x 33 mass, damping, and stiffness matrices, the vector p(t) is a vector of
any externally applied time-varying loads, and d, A and d are the acceleration, velocity, and displacement
vectors, respectively. The matrices M, C, and K describe the distribution of mass, damping, and
elasticity throughout the structure, respectively. The formulas for both K and M may be found in
standard references [15]. This formulation uses a consistent (distributed) mass matrix, as opposed to
a lumped (diagonal) mass matrix. The Rayleigh damping formulation [16] with 2% damping is used
to create the damping matrix C. With this formulation C is a linear combination of M and K. The
nonzero entries of K, C, and M correspond to physical elastic, damping, and inertial coupling between
nodes in the str?.cture model. The nodes of finite element models are numbered to yield banded matrices.
In our case stu Jy, the structure model nodes of Figure 2 are numbered to minimize the bandwidths of
K, C, and M I o 21. We consider a linear analysis, i.e. the mass, damping, and stiffness matrices remain
constant throaghout the problem solution.

Equation I is a system of second order linear differential equations that must be solved for the
unknown vectors d, a, and d. The particular solution algorithm that we use is detailed in Section 4.
We now detail more specific problem formulation issues for our earthquake analysis.

The purpose of this case study is to provide an analysis problem that is representative of similar larger
scientific computing tasks. This finite element earthquake analysis is an example of one such problem.
As with many earthquake analysis efforts, the earthquake acceleration, velocity, and displacement data
are artificially generated [17,18].

In our dynamic analysis, we investigate the response of this structure to earthquake loadings. In such
an analysis, the ground nodes (9,10,11) cannot be constrained, as the earthquake imparts forces (part of
p(t)) that cause displacements, velocities, and accelerations at those nodes. Instead, the time-histories of
the displacements, velocities, and accelerations of the ground nodes are prescribed from the earthquake
data. Thus, we specify a, a, and d at nodes 9-11. From this information, the movements of the other
nodes in the structure can be calculated as we will detail. Simulated horizontal (x) acceleration, velocity,
and displacement data for nodes 9-11 were generated for a 10 second tremor, typical of a strong ground
motion earthquake.

We separate equation 1 into two equations with partitioned vectors denoted by the subscripts 1 and
2, i.e.

M 11 M 12  dI +i[+C11 C12 af I + [ [K1 K12  fd pl (2)
M2 M 22 a2 C21 C22 d2  K 21 K2 2  d2  P2 J

where the matrices have been similarly partitioned. The first equation in (2) can be rearranged as

M d1a + Cia11 + K 1 1 d, = Pi - M12d2 - C 1 2 12 - K 1 2 d 2 , (3)

where the right-hand side is known, and the matrices are 24 x 24 (with a bandwidth of 21) and the
vectors are 24 x 1. The top vector partition (subscript 1) includes nodes 1-8 where d, a, and d are
unknown and must be determined. For these nodes (in our case study) the load vector Pl = 0 since the
earthquake loading is at nodes 9-11. The second partition (subscript 2) includes nodes 9-11 where a, a,
and d are known and specified. Our concern is to solve equation (3) for al, a,. and dj. Once these

3.
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values are obtained, we can calculate P2 (the part of p(t) due to the earthquake forces for nodes 9-11)
from the second equation in (2) if desired. In general, we solve for an accurate time-history of these
nodal displacements during the earthquake loading. The particular quantities of concern are usually the
maximum displacements of the nodes during the earthquake and their final displacements.

This matrix equation (3), which has the same form as (1), must be solved for the acceleration, velocity,
and displacement vectors dL, d 1 , and di. We now detail the time-integrating solution method we use
to solve (3).

4 SOLUTION ALGORITHM

Equation (3) will be solved for d'1 , dj, and dl using the Newmark direct integration method [16].
Equation (3) has the same form as equation (1), and the notation in (1) will be used in this Section.
The subscripts of d, a, and d will denote values for a particular time step. The Newmark integration
scheme uses the following approximations (which assume a linear acceleration between time steps):

t+At = at + [(1 - )at + bdt+&t]At (4)

dt+At = dt + dtAt + j(0.5 - o)d t + adt+&tbAt 2 . (5)

Equations (4) and (5) are used to relate dr+&t and ct+It to dt+At and the previous values of d, at,
and dt. The integration constants a and 6 control the accuracy and stability of the integration scheme
(as detailed later), and At is the time step used for the integration.

AA. When (4) and (5) are substituted into (1) at time t+At, we obtain

Ikdt+At = ot+At, (6)

where Ik is the effective stiffness matrix

Ik = K + a0 M + ajC, (7)

and the right hand side vector in (6) is

bt+&t = Pt+At + M(aodt + a2at + a3dt) + C(aidt + a4alt + asdt), (8)

where
=a 6

G2 = a3 = -1

a4= = s = 2)0"4 --] a 2 ; ,

a6 = t(1-) a7 = 6At.

For 6 and a we choose
6 > 0.50 a > 0.25(0.5 + 6)2.

These conditions insure unconditional stability. With the selection of 6 = 0.50 and a = 0.25 we obtain
the best integration accuracy [16).

For this analysis we are interested in accurately determining the response of the fundamental oscilla-
tory mode of the structure, which is 3.64 Hz. The time step At = 1/60sec. is chosen for the Newmark
algorithm to be small enough to sufficiently sanmplp the 3.64 Hz fundamental oscillation (about 7 x

4.



Nyquist). For a 10 second analysis, 600 iterations of the Newmark algorithm are used, and thus equa-
tion 8 is solved 600 times.

To determine a, a, and d for every time step, we initialize the values of a0 , do, and do to zero for
our case study. We then calculate Pt+&t from (8) and then solve the linear algebraic equation in (6) for
dt+At. From this we find dt+At from

dt+At = ao(dt+At - dt) - a2dt - a3dt (9)

which is (5) rearranged, and then ag+,t from

dt+&t = dt + a6dt + ardt+&t, (10)

which is (4) written in terms of a,.

Equations (6) - (10) result from the Newmark algorithm. Since Rt is constant during the solution, we
factorize it as Ik = LLT, and thus solve (6) for dt+At by

dt+.t = (LLT)-Ift+At. (11)

Equation (11) is only a matrix-vector multiplication. The most time consuming computational step is
evaluating (8), which requires banded matrix-vector multiplications and of order 2N 2 operations per
iteration. In our optical laboratory tests we evaluated (8) optically.

5 LABORATORY SYSTEM AND RESULTS

We now describe the optical linear algebra system used to solve the case study in the laboratory. For
initial investigation and as a proof-of-principle demonstration, we implement a reduced M=1 and N=1
channel version of the processor. The partitioning methods described in Section 2 are used for processing
the data, and the encoding radix for the case study solution is binary. The numeric dynamic range of
the case study is approximately 1010. We use N. = 48 bit encoding which covers the numeric dynamic
range (248 - 1014) and yields accurate solution results. In this specific implementation, bipolar numbers
are used and are encoded with a sign-magnitude representation. This is possible in an M=I system as
documented elsewhere [3].

A photograph of the laboratory system is shown in Figure 3. A 30 mW laser diode is used as the
point modulator at P1 , emitting at a wavelength of 780 nm. The laser diode package and its associated
drive and modulation circuitry are mounted on a board approximately two inches square. The divergent
laser diode beam is collimated by an fL = 4.5mm spherical lens and focused at P2 w th an fL = 100mm
cylindrical lens. A 32-channel acousto-optic cell is used at P2 . The AO cell has a 300 MHz center
frequency and a 100 MHz modulation bandwidth. The diffraction efficiency of the cell is 60%/Watt.
The first order diffracted light output leaving P2 is focused onto a single channel detector/amplifier at P3.
A silicon p-i-n detector is mounted at the input of a high-gain transimpedance amplifier. The frequency
response of the amplifier rolls off 3 dB near 500 MHz. The output of the amplifier is demodulated and
is fed to the A/D and shift/accumulate circuitry.

Data is input to the laboratory optical processor and collected from the output of the optical processor
at high-speed (10 Mbit/sec) by a digital support system through high-speed memory boards. The digital
support system is described elsewhere [6].

5.



4. Figure 3: Laboratory optical linear algebra processor

In previous laboratory implementations, thermal drift effects at P3 limited accurate processor opera-
tion to a few hours, at which time one had to compensate for the drift. In these previous implementations,
the output from P2 was detected at P3 and DC-coupled into the amplifier, where a direct detection of
the output level was used. Drift in the output levels occurred as a result of ambient temperature changes
in the laboratory, and localized heating effects of the integrated detector /preamplifier. In order to elim-
inate any P3 drift effects, an AC-coupled modulation scheme was employed for the laboratory optical
processor implementation discussed in this paper.

* We now describe the AC-coupled modulation scheme. The laser diode at P, is biased at an operating
point near the middle of the linear portion of its operating curve. A constant light output at the bias
point represents a zero for data encoding. To represent a nonzero bit, the laser diode is modulated about
the bias point by modulating the amplitude of a high frequency carrier (approximately 400 MHz). The
carrier frequency must be significantly higher than the 10 Mbit/sec modulation data rate. To represent
bits of different data encoding levels, the carrier is simply amplitude modulated corresponding to the
bit levels (thus no carrier indicates a zero bit). For the present lab data binary encoding is used. The
AO cell at P2 is fed with a signal at 300 MHz (the center frequency of the AO cell) and modulated by
turning the carrier on at different levels, and off for a zero data bit. The light distribution leaving P2
representing any nonzero products will thus have temporal data modulation at the P1 carrier frequency.
The detector/amplifier output from P3 is AC-coupled into a demodulator circuit. The input to the
demodulator is now unaffected by any low frequency thermal drift at P3. The demodulator circuit is an
envelope detector which consists of an RF transformer, RF diode, and low pass filter. This AC-coupled
modulation technique has been extremely successful in the laboratory. The optical processor operates
without any problems from thermal drift at P3 . A mixer circuit may also be used for demodulation. In
this case the P1 carrier is used as the local oscillator, the detector/ampifier output is input to the mixer

6.
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Figure 4: Case study solution comparison

RF port, and the demodulated signal is present at the IF port of the mixer. This method has also been
used in the laboratory with equal success, however it requires the additional local oscillator reference
line.

The finite element case study solved with the Newmark algorithm was implemented on the laboratory
optical processor described above. The response of the x coordinate displacement of node 1 in Figure
2 is used to compare the 48-bit digital solution with the laboratory optical solution of the case study.
The solution results are illustrated in Figure 4. The horizontal displacement in inches is plotted on
the vertical axis vs. the 600 time steps of the 10 second tremor on the horizontal axis. The solid line
indicates the 48-bit digital solution, and the dashed line indicates the Nb = 48 bit optical laboratory
solution. Both solutions are nearly identical with an average percent error of less than 1%. This value
is an average over all 600 points of the absolute percent error between the laboratory optical and digital
solutions. The standard deviation of the percent error is also less than 1%.

6 DISCUSSION

The small errors that occurred in the laboratory optical processor results were not entirel. unexpected
for an initial laboratory system implementation. The source of the errors was discovered after additional
testing of the laboratory optical processor to be the detector/amplifier used at lP3 . In the AC-coupled
modulation technique, the P laser diode is biased on and thus emits a constant output (with no carrier)
with no data input. Thus, first order diffracted light from P2 will be incident on the detector at P3
whenever nonzero data is input to the AO cell at P2 (even with no P1 data preselit). \Vhen nionzero data

is present at both P, an( P2, the P3 output signal is at the .100 PMlz l, carrivr frequency, oherwise it is

7.



at DC. This results in a low frequency variation (determined by the AO cell data, number of consecutive

nonzero numbers, etc.) in the optical power incident on the detector. This low frequency variation

affected the high frequency (400 MHz) gain of the the P3 detector/amplifier. Thus, the output levels

of the detector/amplifier and the demodulator were dependent on low frequency duty cycle variations

of the data input to the AO cell. This problem can easily be corrected with proper coupling between

the detector and the amplifier (which was not an alternative for our device), or with proper amplifier

design. We are currently finishing fabrication and testing of a 10-channel detector/amplifier array to be

used at P3 . Tests of the first operational channels verified the success of this new design, and that the

previous detector problems are now absent in this new device. Initial tests of the optical system with

this new detector showed no errors for various sets of test patterns of data. We plan to implement the

case study on our laboratory optical system with the new detector/amplifier array as soon as the system

fabrication is completed. We expect the optical processing results to coincide exactly with the digital

results.

7 CONCLUSION

This paper has detailel the use of a laboratory optical linear algebra processing system to solve a linear

dynamic finite element case study. The computationally-intensive banded matrix-vector products of the

Newmark time-integration algorithm were implemented on the optical processor. Excellent laboratory

results were obtained, and further improvement to digital accuracy can be achieved with a simple design

modification.

a-
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ABSTRACT

We detail the use of simplified error models to accurately simulate and evaluate the performance
of an optical linear algebra processor. The optical architecture used to perform banded matrix-vector
products is reviewed along with the linear dynamic finite element case study. The laboratory hardware
and AC-modulation technique used are presented. The individual processor error source models and
their simulator implementation are detailed. Several significant simplifications are introduced to ease
the computational requirements and complexity of the simulations. The error models are verified with
a laboratory implementation of the processor, and are used to evaluate its potential performance.

1. INTRODUCTION

This paper describes the use of simplified error source models to accurately simulate an optical linear
algebra processor. The error source models are general enough that they may be adapted to simulate a
wide range of optical data processing architectures. Many specialized optical linear algebra processors

have been proposed to provide fast processing for linear algebra applications [1,2]. This paper illustrates
the use of a specific optical processor [3] that is well-suited to handle the computational tasks of a linear
dynamic structurA mechanics finite element analysis problem, specifically, the parallel computation of
banded matrix-vector products. The solutions of static and dynamic structural mechanics finite element
analysis problems have been described previously [4-6], along with initial laboratory results on a cross-
section of the processor [6]. We first review the optical linear algebra processor architecture and discuss
partioning and data representation issues (Section 2). Next, we present our finite element analysis case
study (Section 3), and the AC-coupled modulation scheme and hardware details (Section 4). The error
source models and simulations are presented (Section 5), and the laboratory processing results are then
examined (Section 6).

2. OPTICAL LINEAR ALGEBRA PROCESSOR

The optical linear algebra processor architecture that we consider is shown in Figure 1. The processor
uses M laser diodes as point modulators at P1 . Each point modulator is imaged onto a corresponding
vertical region of a multi-channel acousto-optic (AO) cell at P2 . The light distribution leaving P2 is

spatially integrated vertically onto a linear detector array at P3 . Each output detector is followed by
an A/D converter and a shift/accumulator register to provide time-integration at P3 . This emulates a

high-speed shift register digital output system. This optical computing architecture was first described
several years ago [31, and its initial laboratory implementations have been previously presented [6,7],
thus, the following descriptions of the processor operation, partitioning, and data representation will be
brief.
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Figure 1: Optical time- and space-integrating architecture.

The optical inear algebra processor is capable of achieving high-accuracy optical matrix-vector op-

erations as follows. We consider only one of the M vertical process dct for enexmultiplying two Nbit

numbers. The digita y encoded bits of the multipler are fed sequentially to the P point modulator, lnd

the bits of the multipicand are fed word parael to the AO ce at P. The word par lel multiplicand

bits are present in one vertical processor channel section of the AO ce for a time 2. During eh T ,

the corresponding P point modulator is pulsed on every T with onf uc e dgbits of the multipter. Eth
P, point modulator is pulsed on N times every T2, thus NTI = T2. Each TI, one bit of the multiplier is

multipied by all N bits of the multipicand and the output scalar-word product is imaged onto the N de-

tectors at P3. The P3 data is shifted every Ti, and the scalar-word product for the next T is formed and

added to the prior (shifted) P3 data. Thus, e3 accumulates partial products of the multiplication result.

After T2 = NTi, the P3 output is the mixed radix representation of the product of the multipler and

multiplicand. When all M channels are considered, M scalar multiplications and additions of different
number pairs are performed every T2 in the processor. Thus, an M-element vector inner product (VIP)

is computed on the processor each T2 by space integration. The mixed radix output is earily converted
to conventional binary by A/D conversion and shift/adds of successive digits as they are shifted out of

P3 every Ti. This is known as the digital multiplication by analog convolution (DMAC) algorithm [8-10].

This architecture performs banded matrix vector products very efficiently 13). In this algorithm, the

contents of M diagonals of the matrix are fed to the M point modulators at P1. For banded matrices,

no out-of-band zero diagonals are processed. The vector elements are fed to the P2 AO cell and reused

in a systolic fas hion in all M processor channels. Likewise, matrix partitioning [31 is eas ily achieved on

this system when matrix bandwidths and vector lengths are larger than N1. The matrix is partitioned

into diagonal ribbons, M diagonals are processed at one time, and the results for all diagonals are

accumulated. With this partitioning technique, data flow and bookkeeping are simplified, and processor



dead time is minimized.

If the number of desired encoding bits N0 is larger than the number of available AO cell channels N
at P2 and P3 , bit partitioning [7] is also easily implemented. Since there are no carries in DMAC until
mixed radix to binary conversion, we simply process the first N bits of the multiplicand, store the results,
process the next N bits, etc. [7] Thus any desired accuracy may be achieved with only N channels at P2

and P3 .

Many techniques for representing bipolar data on optical numerical processors have been presented
(11-151 Our processor can be operated using a negative base representation for bipolar data [15]. This
method handles negative numbers efficiently without requiring a significant number of extra bits, addi-
tional processing, or time or space multiplexing. Finally, we note that the DMAC algorithm is valid for
data encoded in any radix [3]. The use of higher radices significantly increases computational throughput
within A/D output P3 converter limits.

3. LABORATORY SYSTEM

We now describe the optical linear algebra system used to solve the case study in the laboratory and
evaluated the error source modeling. We implement a reduced M=l and N=1 channel version of the
processor. The partitioning methods described in Section 2 are used for processing the data, and the
encoding radix for the case study solution is binary. The numeric dynamic range of the case study is
approximately 1010 . We use N. = 48 bit encoding which covers the numeric dynamic range (248 = 1014)
and yields accurate solution results. In this specific implementation, bipolar numbers are used and
are encoded with a sign-magnitude representation. This is possible in an M=l system as documented
elsewhere [3].

A photograph of the laboratory system is shown in Figure 2. A Sharp VSIS (V-channeled Substrate
Inner Stripe) [16] 30 mW laser diode is used as the point modulator at P1, emitting at a wavelength of
780 nm. The laser diode package and its associated drive and modulation circuitry are mounted on a
board approximately two inches square. The divergent laser diode beam is collimated by an fL = 4.5
mm spherical lens and focused at P2 with an fL = 100 mm cylindrical lens. A 32-channel acousto-optic
cell is used at P2. The AO cell has a 300 MHz center frequency and a 100 MHz modulation bandwidth.
The diffraction efficiency of the cell is 60%/Watt. The first order diffracted light output leaving P2 is
focused onto a single channel of a 10-channel detector/amplifier array at P3. A custom United Detector
Technology array of 10 silicon p-i-n detectors feeds individual high-gain, low inpult impedance microwave
amplifier chains. The bandpass of the amplifiers is 250 MHz to 450 MHz. The output of the amplifier
is demodulated and is fed to the A/D and shift/accumulate circuitry.

Data is input to the laboratory optical processor and collected from the output of the optical processor
at high-speed (10 Mbit/sec) by a digital support system through high-speed memory boards. The digital
support system is described elsewhere [7].

In previous laboratory implementations, thermal drift effects at P3 limited accurate processor opera-
tion to a few hours, at which time drift compensation was needed. In these previous implementations,
the output from P2 was detected at P3 and DC-coupled into the amplifier, where a direct detection
of the output level was used. Drift in the output levels occurred as a result of ambient temperature
changes in the laboratory, and localized heating effects of the integrated detector/preamplifier. In order
to eliminate any P3 drift effects, an AC-coupled modulation scheme was employed for the laboratory
optical processor implementation discussed in this paper.



Figure 2: Laboratory optical linear algebra processor.

We now describe the AC-coupled modulation scheme. The laser diode at P, is biased at an operating
point near the middle of the linear portion of its operating curve. A constant light output at the bias
point represents a zero for data encoding. To represent a nonzero bit, the laser diode is modulated about
the bias point by modulating the amplitude of a high frequency 400 MHz carrier. The carrier frequency
must be significantly higher than the 10 Mbit/sec modulation data rate. To represent bits with different
data encoding levels, the carrier is simply amplitude modulated (by varying the modulation depth)
corresponding to the bit levels (with no carrier indicating a zero bit). For the present lab data, binary
encoding is used. This maintains the output of the laser diode constant using a monitor photodiode
feedback circuit. The AO cell at P2 is fed with a signal at 300 MHz (the center frequency of the AO
cell) and is modulated by turning the carrier on at different levels and off for a zero data bit. The
light distribution leaving P2 representing any nonzero products will thus have temporal data modulation
at the P 1 carrier frequency. The detector/amplifier output from P3 is AC-coupled into a demodulator
circuit. The input to the demodulator is now unaffected by any low frequency thermal drift at P3 . The
demodulator circuit is an envelope detector which consists of an RF transformer, RF diode, and low
pass filter. This AC-coupled modulation technique has been extremely successful in the laboratory. The
optical processor has operated for hundreds of hours without any problems from thermal drift at P3 .

4. FINITE ELEMENT LINEAR DYNAMIC CASE STUDY

The case study is a linear dynamic finite element structural mechanics problem. The effects of
simulated earthquake loadings applied to a plane frame structure are analyzed by our optical laboratory
system. The case study has been fully detailed elsewhere [6], and thus we present only the significant
equations which are implemented on the optical linear algebra processor.

........ i.-, .,.-is iam Ha ila iia Ha I II IIniow



Dynamic analysis [17] of the 11-node structure chosen requires solution of the matrix equation

Md + Ca + Kd = p(t), (1)

where M, C, and K are the 33 x 33 mass, damping, and stiffness matrices, the vector p(t) is a vector of
any externally applied time-varying loads, and d, d and d are the acceleration, velocity, and displacement
vectors, respectively. The matrices M, C, and K describe the distribution of mass, damping, and
elasticity throughout the structure, respectively. We consider a linear analysis, i.e. the mass, damping,
and stiffness matrices remain constant throughout the problem solution. Equation 1 is a system of
second order linear differential equations that must be solved for the unknown vectors d, d, and d.

Equation 1 is partitioned into two equations, the first including the nodes where d, e, and d are
unknown, and the second including the nodes where these values are specified by the earthquake ground
motion. These equations are rearranged and solved for the unknown values of d, d, and d using the
Newmark direct integration algorithm [17]. The most computationally burdensome step [6] of the solution
processes is the evaluation of

ot+At = Pt+At + M(aodt + a2dt + a3 dt) + C(aidt + a4at + asdt), (2)

where the a, are constants. The evaluation of (2) requires calculation of the two banded matrix-vector

products involving M and C, as well as three additional banded matrix-vector products needed to
compute Pt+At. We solve equation (2) on the optical linear algebra processor in both the laboratory
and the simulator.

The Newmark direct integration algorithm requires 600 iterations for our case study, which requires
equation (2) to be solved at 600 time steps. We consider the horizontal displacement of a significant
node (the top left node) of the structure at all 600 iterations for the case study solution output. The
solution is shown in Figure 3. The horizontal displacement in inches is plotted on the vertical axis vs. the
600 time steps of the 10 second tremor on the horizontal axis. The solution follows the ground motion
displacement superimposed with an additional 3.67 Hz oscillation, characteristic of the fundamental
oscillatory mode of the structure.

5. ERROR SOURCES, MODELING, AND SIMULATIONS

Previous work in error source modeling for optical numerical processors has focused on error source
analysis of a frequency-multiplexed AO systolic space-integrating processor operating on analog data
[18]. Models verified in the laboratory have shown that the individual errors combine in a mean square
sense for the analog processor [19]. Error source modeling for the present digitally encoded processor was
performed [5], and showed that the modeling for digitally encoded optical processors requires extensive
computer time. The error modeling (this section) uses the Cray X-MP/48 and significant simplifications
to reduce the modeling complexity and computational requirements. These simplified models are verified
with laboratory data in Section 6.

Our Sharp laser diodes are weakly index-guided laser diodes and are similar in operating characteristics

to channeled substrate planar laser diodes (20]. There are four significant noise sources associated with

laser diodes: intrinsic intensity noise (quantum noise); mode partition noise; optical feedback noise;
operating curve kinks and self-pulsations. Intensity noi.e is the only noise source of concern for our

processor. Since we detect the total optical intensity and have no chromatic dispersion mechanism in
our system, mode partition noise does not exist. Optical feedback noise from near-end and far-end
reflections [21] are negligible in our system, due to the detection bandpass frequencies and the system
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Figure 3: Case study solution.

design. There are also no operating curve kinks at our levels of operation, or any self-pulsations associated
with our devices. Intensity noise fluctuations are due to the response of the optical field in the laser
diode to the modulation by the intrinsic shot noise of the carriers. For a fixed bias level, an increase in
the modulation depth produces an increase in the intensity noise. thus intensity noise is signal dependent
(multiplicative) and time-varying for our modulation scheme. For our laser diodes, the spectrum of the
intensity noise is nearly flat up to 1 GHz. The time-varying intensity variations may be modeled by a
Gaussian density [22].

Another P1 error source is due to the difference between the transfer functions of the P1 point
modulators in the input array. This causes a spatial error across the input array which we refer to as
input spatial gain error. This error includes effects from the individual D/A converters and RF mixers
feeding the laser diodes, as well as the laser diodes themselves. The error is fixed and multiplicative,
and is considered to be the residual error after calibration. Residual errors are properly modeled by
a truncated Gaussian density, where the maximum variation is limited to 3a by the calibration and
measurement accuracy.

The significant P2 AO cell errors are acoustic attenuation and crosstalk. Acoustic attenuation is
correctable for a single frequency by using a fixed mask before or after P2 , or by adjusting the gains
of the P1 point modulators. For a narrowband modulation signal such as ours, these methods permit
correction to within a small fixed multiplicative residual error. Multi-channel AO cells can be designed to
give acoustical and electrical crosstalk isolation levels of 30 dB or better. This is the isolation obtained
with our P2 multi-channel AO cell. This error source is not explicitly included for reasons discussed
later.



Each P3 detector system channel includes a silicon p-i-n detector, its wideband amplifier, demodulator,
and A/D converter. Quantum noise, or shot noise, is present in the photocurrent due to the quantized

nature of charge carriers. We are interested in the mean square noise current because it is a measure
of the noise variance, and hence the standard deviation, which is used in our error modeling. The total
mean square shot noise current i, is given by

= 2eBIt, (3)

where B is the detection system bandwidth, e is the electronic charge, and It is the total photocurrent.
It consists of signal, dark current, and background radiation components, where the latter two are
insignificant in our system. Shot noise is time-varying and signal dependent (multiplicative) with a white
frequency spectrum [23]. Shot noise is governed by a Poisson density which may be closely approximated
by a Gaussian density [24].

A thermal (Johnson, Nyquist) noise current iT arises in the load resistor RL of the photodiode. It is
temperature dependent and has a mean square value of

12 4KTB
T L '(4)

where K is Boltzmann's constant, and T is the absolute temperature. Thermal noise has a white
spectrum and is also governed by a Gaussian density [24]. It is time-varying and signal independent
(additive). The detector amplifier contributes additional noise to the signal from resistive elements and
active components in the amplifier. This noise current has both thermal and shot noise components,
but the thermal noise dominates, and thus the amplifier noise is primarily signal independent (additive).
We refer to the thermal noise in RL and the detector amplifier as detector noise. The demodulator
circuits and A/D converters also contribute noise, which we refer to as circuit noise. We use a first-
order approximation to random noise in the A/D converter circuit by modeling a perfect A/D converter
preceded by signal independent circuit noise. The demodulator circuit noise is due to thermal noise in the
components being used. We thus model both the detector and circuit noise as time-varying and additive.
The N channel P3 detector system array also exhibits spatial gain error due to the variations in detector
channel transfer functions. We refer to this as spatial response error, which is a fixed multiplicative
residual error.

We now present the specific error models we use to simulate the optical processor. Several simpli-
fications are made to reduce the complexity and computational requirements of the models. The error
sources may be classified as multiplicative or additive, and fixed or time-varying. For a multiplicative
error, the noise or error value multiplies the desired signal, and the total noise contribution is thus signal
dependent. For an additive error, the noise value is added to the signal, and thus the total noise con-
tribution is independent of the signal. Fixed errors are constant, while time-varying errors are different
for each T time interval.

We model two PI errors, fixed spatial gain error and time-varying intensity noise. Both error sources
are signal dependent (multiplicative) in nature. No signal independent P error is included. Four P3
detector system error sources are modeled. The first two are multiplicative. They include the fixed
spatial response error (which models the residual detector channel response and non-uniformity errors),
and a time-varying shot noise error (which models the photodiode shot noise). The remaining two P3
error source models are additive and time-varying. They include detector noise (modeling the thermal
noise from the load resistor RL and the detector amplifier noise), and circuit noise (which includes the
demodulator and A/D circuits).
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The error models and their notation are tummarized in Table 1, which notes the specific error source,
the error type, and the model used for it. We denote the M input P point modulators by the subscript
i (which can take on the values 1,...,M), and the N detector P3 channels by the subscript j (which can
take on the values 1,...,N). The superscripts 1 and 3 denote a PI error and a P3 error respectively.

I plane model type notation
P spatial gain fixed multiplicative 1 + 6?

intensity noise time-varying multiplicative 1 + 0(t)
spatial response fixed multiplicative 1 + e3

P3  shot noise time-varying multiplicative 1 + 0(t)
detector noise time-varying additive d1 (t)
circuit noise time-varying additive cj(t)

Table 1: Error models and notation.

To formulate the fixed multiplicative spatial gain and intensity noise P error models, we write the
exact input to laser diode i as ai and describe the optical intensity leaving it as

ai = ai(1 + 6). (5)

The optical signal bj incident on P3 detector channel j is thus

b, = axij, (6)

where di is given in equation (5) and xi . represents the AO cell transmittance at P2. The detector

channel's output just before the perfect A/D converter is

bj = b (l + 63)(1 + 0(t)) + d,(t) + c,(t). (7)

The error model simulations are substantially simplified by using the same 0(t) in both the P1 and P3

time-varying multiplicative error models. This approximation has been justified as discussed later.

The noise value el for the spatial gain error is simulated by

6 = aD, (8)

where D is a random zero-mean Gaussian variate of unit variance N(0,1), and c is the desired standard
deviation of the error. The maximum percent error (MPE) that is expected for a given value (or that
we wish to model) determines a from

3xax 100%=MPE. (9)

Since more than 99% of the Gaussian variates are within 3a, this model accurately describes greater
than 99% of the errors. The fixed variates that are used in the simulations are checked to make sure
that no I D I> 3 value exists outside of the 3a range. This prevents any unreasonably large variates,
which are not present for fixed errors that are calibrated to within a measured value. The possibility
of a variate I D J> I for a time-varying error is realistic because of the Gaussian nature of the various
noise sources. Wt use (8) and (9) (with different c values) to describe all of the multiplicative errors,
6?, 63 and 0(t). New Gaussian variates are generated at every T1 in the processor simulations for the
time-varying errors.
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The zero-mean Gaussian additive noise values dj(t) and c,(t) are simulated similarly to the multi-
plicative noise values. However, since these errors are additive, reference to the full-scale (FS) value of
the signal being modeled is included, i.e. d1(t) = aD, (10)

where a satisfies
3 x, x 100% = MPFSE x FS, (11)

where MPFSE is the maximum percent full-scale error. The circuit noise cj(t) is also simulated by (10)
and (11), with a different v. The FS value for the circuit noise and detector noise is the maximum
possible mixed-radix detector value. For the processor size M and radix B, the full-scale value is

FS = M(B - 1)2. (12)

The simulator (and the actual A/D used) incorporates FS clipping, whereby any noise-corrupted detector
value that is outside of the A/D range is clipped to the maximum or minimum A/D input analog value.

We implement an important modeling simplification by including no P2 error sources. This is valid
because any residual acoustic attenuation error may be included in the P1 fixed spatial gain error,
and the crosstalk effects are insignificant for our encoding with 30 dB of isolation. Crosstalk effects
may also be included indirectly in the P3 multiplicative time-varying error. Another simplification is
the consolidation of the additive time-varying P3 error sources dj(t) and cj(t). The error sources are
combined by summing the variances calculated from (11). The final simplification is the merging of
the P1 and P3 time-varying multiplicative intensity noise and shot noise errors into one generated error
signal 0(t). This was done since an extremely time-consuming computationa portion of the error source
model simulation is the generation of time-varying variates every T [5]. In our simplified model, we
generate only a single variate every T1 which is used for all of the M-channel multiplicative intensity
noise errors and all of the N-channel multiplicative shot noise errors. The single variate (independent
of i and j) is used for the 0(t) noise value in Table 1. The simplification is justified if the mean and the
variance of b. are the same with and without the simplification. It is simple to show that the means are
equivalent. We generate the a value for the 0(t) noise value to make the variances equivalent. These
error model simplifications significantly reduce the complexity and the required computation time of
the optical processor simulator. Even so, the simulation of the implementation of our dynamic case
study requires a large amount of computer time. The optical processor simulations were run on a Cray
X-MP/48 supercomputer. The supercomputing facilities are part of the Pittsburgh Supercomputing
Center, and the computer time was arranged by the National Science Foundation. A radix 2 simulation
of our case study requires 600 seconds (10 minutes) of Cray CPU time.

The goals of the error model optical processor simulations are (1) to understand how individual and
combined errors affect the optical processor and determine the dominant errors, and (2) to evaluate the
error models' ability to properly model the optical processor and predict its performance; this involves
verifying the simulation results with laboratory data (Section 6). Errors will occur in the processor
whenever a noise source causes a mixed-radix optical signal at P3 to be incorrect by 1/2-bit or greater
before the A/D conversion operation takes place. We refer to this occurrence as an output error. Any
output error will cause the case study solution to be in error as well. We refer to this error as solution
percent error, which is defined by

solution percent error = 60 [ X 100%j , (13)

..... ~60 90)ii l 1 iII



where e(i) is the calculated displacement at iteration i for the error simulation, and g(i) is the displace-
ment value with no processor errors.

We expect the additive time-varying noise sources (detector and circuit noise) to dominate in the
optical processor. As the MPE level of a multiplicative error is increased, the number of possible
multiplications which can result in an output error increases. Thus, in general, we expect the solution
percent error to increase proportional to the MPE level for multiplicative errors. However, as an additive
error MPFSE is increased, a sharp transition occurs from a condition where no output errors can occur,
to one where an output error may occur for every possible multiplication. Thus, we expect a large jump in
the solution percent error value from zero, as the MPFSE of an additive error is increased. We also expect
multiple error sources to combine nonlinearly [5] because of the A/D conversion operation. Several error
sources, each too small to cause output errors individually, may combine to reach the threshold where
output errors occur. Thus, when multiple error sources are combined, the results cannot be predicted
by a linear combination of the individual error sources and their separate effects.

Table 2 shows selected simulation results for radix 2 operation. Tests 1-8 indicate the individual
error source MPE and MPFSE ranges where solution percent errors first occur. Tests 1,2 and 5,6 show
that solution percent errors will occur for MPE values between 55 and 70 for the fixed multiplicative P,
and P3 spatial errors. Tests 3 and 4 show that the first solution percent errors occur when the MPE
is between 30 and 35 for the time-varying P, and P 3 intensity noise and shot noise errors, which are
simulated with the same variates and error value 0(t). Tests 7 and 8 show the results for the time-varying
additive P3 errors. Because these errors are simulated together by adding their variances, the results
indicated in tests 7 and 8 are equivalent to either individual error with a MPFSE value of that in test
7 and 8 multiplied by V2. Test 9 indicates one set of multiple error levels that can be allowed with no
solution errors.

spatial intensity spatial shot detector circuit
gain noise response noise noise noise solution

test MPE MPE MPE MPE MPFSE MPFSE percent
no. fixed time-var. fixed time-var. time-var. time-var error

mult. mult. mult. mult. additive additive
1 60.0 0.0 0.0 0.0 0.0 0.0 0
2 70.0 0.0 0.0 0.0 0.0 0.0 95
3 0.0 30.0 0.0 0.0 0.0 0.0 0
4 0.0 0.0 0.0 35.0 0.0 0.0 29
5 0.0 0.0 55.0 0.0 0.0 0.0 0
6 0.0 0.0 65.0 0.0 0.0 0.0 120

7 0.0 0.0 0.0 0.0 19.93 19.93 0
8 0.0 0.0 0.0 0.0 19.94 19.94 75x10 3

9 3.0 6.0 3.0 6.0 10.0 10.0 0
10 10.0 7.6 10.0 7.6 14.4 14.4 0
11 10.0 7.6 10.0 7.6 19.2 19.2 59xI0 - 4

Table 2: Radix 2 simulation results.

The simulation results for all radices clearly indicate that the additive time-varying P3 errors are
the dominant error sources. The detector and circuit noise MPFSE values required to cause a non-zero
percent error in the solution are lower than the MPE values for any other error source. The jump in
percent error as the MPFSE is increased over that level (tests 7 and 8) is considerably more drastic than



the jump in percent error for the other processor error sources (tests 1-6). as expected. The iast three
tests listed in Table 2 show simulation results for all error sources combined. These show comparisons

w- between different error source MPE and MPFSE levels which yield little or no solution percent error.
Tests 10 and 11 show the nonlinear thresholding effect predicted for combined error sources, with the
additive time-varying MPFSE noise levels increased in test 11 from their value in test 10. The solution
percent error is small in test 11 (since other MPE errors are present), and not the large jump that is
observed when only the additive MPFSE errors are present (tests 7 and 8).

6. LABORATORY RESULTS

This section presents laboratory results which verify the error source modeling and simulations for
the optical processor. The varios MPE and MPFSE error source levels were measured in the laboratory
for our M=N=1 channel processor. The measurements were made from an RF spectrum analyzer or an
oscilloscope. The typical error source levels for our laboratory optical processor are given in test I of
Table 3. The 3.00 MPFSE for the detector noise is the most troublesome because it is the largest error
source value, a'id detector noise is a dominant error in the processor. This large value was primarily due
to the low inpit impedance design of our detector amplifier which contributes a great deal of thermal
noise current at the input (equation (4)). The last two columns of Table 3 for test 1 show that the case
study runs with 0.0% solution percent error on the laboratory processor, as well as on the simulator.

spatial intensity spatial shot detector circuit
gain noise response noise noise noise laboratory simulation

test MPE MPE MPE MPE MPFSE MPFSE percent percent
fixed time-var. fixed time-var. time-var. time-var. error error
mult. mult. mult. mult. additive additive

1 1.00 1.44 1.00 0.02 3.00 0.42 0.00 0.00
2 1.00 1.44 60.00 0.02 10.0 0.42 0.70 0.66
3 30.0 25.0 1.00 0.02 3.00 0.42 25.6 24.1
4 1.00 1.44 1.00 0.02 20.00 20.00 1226 7490

Table 3: Error model performance evaluation results.

Tests 2-4 of Table 3 verify the simulator's ability to accurately predict the performance of the lab-
oratory optical processor. In each test, various errors are artificially introduced into the laboratory
processor setup, over the nominal values given in test 1. In test 2, the spatial response MPE is increased
to 60.00, and the detector noise is increased to 10.00. The solution percent error obtained by running
the case study on the laboratory optical processor was 0.70%, as shown in test 2 of Table 3 and in Figure
4, where the solid line represents the exact (no error) optical processor solution, and the dashed line
represents the laboratory results. The laboratory results are quite close to the exact results, with small
errors visible near iterations 280 and 360. To test our error modeling and simulator, a simulation was
run using the error model values in test 2. The simulator case study solution is shown in Figure 5. The
percent error predicted by our simulator was 0.66 (test 1), which differs by 0.04% and is within 6 percent
(040"0 = 6%) of the value (Figure 4) determined on the optical laboratory system. The general
shape of both curves are nearly identical, with no large visible error oscillations along the solution path.
Thus, the simulator accurately predicted the laboratory processor's performance for this set of error
model levels.

Test 3 in Table 3 used an effective spatial gain MPE of 30.0 (30 times the normal system value), and
an effective intensity noise MPE of 25.0 (17 times the normal system value). The optical laboratory
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Figure 6: Laboratory case study with 25.6/c solution error.

case study output is shown in Figure 6. The figure shows a significant solution percent error which is
__ calculated to be 25.6%c. The out put of the simulator run using these error model levels (test 2) is shown

in Figure 7. As seen, the simulated solution is similar to the laboratory solution shown in Figure 6,
with both solutions having moderate error oscillations for approximately 2.50 iterations. The simulated
percent error is 24.1%, or a 1.57 difference. which is an accurate difference of 0 = 6% in the

laboratory processor's performance versus that of the simulator.

Test 4 in Table 3 used the laboratory processor with large effective detector and circuit noise NIPFSEs
of 20 (7 and 48 times the typical system values). The laboratory solution results in Figure 8 show a
fixed-point representation clipping phenomenon, due to nonlinear clipping effects of the limited dynamic
range 48-bit binary encoding. which clips the response at an amplitude near 1.0. The high frequency
response is due to excitation of higher structural oscillatory modes, nonlinear effects, or both. The
laboratory result has a large percent error of 1226%r. The simulated result with the MPFSE levels in test
4 (Table 3) is shown in Figure 9. where clipping is exhibited as well. The simulator percent error was
7490%. We expect this to be large, but do not expect it to necessarily agree well with the laboratory
value when such large processor errors are involved. This is due to the dependence of additive error on
the specific simulator fixed variate values, and the nonlinear nature of the fixed-point clipping effect.
It is important that the clipping effect was predicted by the simulator. and that a similar invalid case
study solution was obtained.

In the above three independent trials with different values for four error sources, our simulator accu-
rately predicted the laboratory case study solution. The basic variations in the shape of the curves for
the two solutions (laboratory and simulator) are similar, and the percent error values are in excellent
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agreement (w.%ithin 6 percent error for small and moderate percent error values, and of the same order of
magnitude for large error values).

We now use the simulator to evaluate the potential of the laboratory optical processor. Our laboratory
processor was built as a proof-of-principle system using new P1 point modulators and a sub-optimally de-
signed detector amplifier. The laboratory electronics, RF circuitry, and support hardware were designed
to be general and flexible enough to serve a variety of laboratory needs. These components were obtained
with a moderate budget, and have worked well for our research purposes. However, these components do
not give the optimal performance that could be obtained with custom designed hardware. For example,
if a properly designed transimpedance detector amplifier is used at P3. the detector noise MPFSE can
be reduced by several orders of magnitude. We summarize the best possible NIPE and MPFSE values
possible with current technology for the error sources values in our processor in Table 4.

spatial intensity spatial shot detector circuit
gain noise response noise noise noise
NIPE NIPE NIP E MIPE 'MP FS E MPFSE
fixed time-var. fixed time-var. time-var. time-var.
,ult. mult. mult. mult. additive additive
0.01 0.04 0.01 0.02 0.002 00

Table 4: Achievable optical processor error source levels.

We evaluate the optical processor's performance potential by considering the maximum number of
input channels M possible with radi 2. 4, and 8 encoding for the error source values given in Table 4.
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These maximum M values are listed in Table 5. Test I of Table 5 shows that the optical processcr can
utilize more than M=1000 channels for radix 2 encoding. Practical considerations limit the number of
input channels M to approximately 200. Test 2 shows that a maximum of M=150 channels may be used
for radix 4 encoding. The number of input channels is substantially limited for radix 8 encoding. Test
3 shows that a maximum of 23 channels may be used. This is because we require M(B - 1)2 = 49M
resolvable levels at P3 , plus a maximum of 3a error variation to ensure no digital processing errors.
These restrictions approach the analog dynamic range limitations of the system, as specified in Table 4.

test radix .aximum channels M
no. for zero percent error
1 2 > 1000
2 4 150
3 8 23

Table 5: Maximum simulated AM yielding zero percent error, using Table 6.4 error source levels.

Table 6 presents several optica linear algebra processor specifications using the maximum M given
in Table 5 (with M = 200 for radix 2). The processor performance is measured in millions of operations
per second (MOPS), where one operation is defined as one multiplication and one addition. The table
shows that for binary encoding and M=200 channels, 32-bit multiplications may be performed at a rate
of 625 MOPS with a processor using only 8-bit A/Ds.

radix N Al A/D T2 NIOPS
bits (,iscc)

2 32 200 8 320 625

4 32 150 11 320 469
8 32 23 11 320 72
2 16 200 8 160 1250
4 16 150 11 160 938

8 16 23 11 160 144

Table 6: Various optical processor performance measures for 32-bit and 16-bit multiplications with 100

MHz 12-bit A/Ds.

7. SUMMARY

This paper has presented measurements and performance results obtained from the laboratory optical
processor. Noise measurements for the six error model components were detailed for our laboratory
optical processor. The error modeling was shown to be accurate, as was verified by four different
laboratory processor case study solution results with increased errors. Both the percent error values
and the solution trajectory form were predicted properly by the error source simulator. We discussed
the error source levels that could be achieved if the most advanced technology was used to fabricate
the optical processor. These levels were quantified for an AM > 1 channel processor to determine its
maximum performance capability. We found that 200 channels may be used with radix 2 icoding, 150
channels with radix 4 encoding, and 23 channels with radix 8 encoding, and that performance above I
GOPs is possible.

The simplified error models are not limited to the area of linear algebra processors. These contri-
butions are applicable to a wide variety of optical systems, including many digital optical computing
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systems, optical witching and connection systems, optical neural network architectures, AO-based syn-
thetic aperture radar processors, optical correlation systems, and many other general optical computing
architectures.
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ABSTRACT

An optical processor to solve partial differential equations for computational fluid dynamics applica-
tions is considered. This application is new and original for optical processors. The algorithms that are
used are optical realizations of the Newton-Raphson method for nonlinear equations and a new optical
LU direct decomposition and Gauss-Seidel iterative solution to the resultant linear algebraic equations.
These algorithms are used to solve Burger's equation (a specific form of the momentum equation in fluid
dynamics). The nonlinear equations provide 1-D velocity data at each time step. Simulation results of
optical processing with these algorithms on computational fluid dynamics data is included.

- 1. INTRODUCTION

Optical linear algebraic processors (OLAPs) are general-purpose optical array processor systems that
perform matrix-vector multiplications and a wide variety of linear algebraic operations [1]. To obtain
high-accuracy, we use the digital multiplication by analog convolution (DMAC) algorithm [2-4] with
multi-level (non-base 2) encoding [5] and a negative base [6) to handle bipolar data. This paper addresses
the issues of accuracy, speed, performance and the base used for two linear algebraic equation (LAE)
solution algorithms to solve nonlinear, time-varying partial differential equations (PDEs).

We use a I-D PDE example from computational fluid dynamics (CFD) as our case study. This is
a new application for optical matrix-vector processing and is an opportunity to analyze and quantify
OLAP performance in the complex computational requirements of fluid dynamics. Our case study is
the momentum equation from the Navier-Stokes equations without the pressure term; it is also known
as Burger's equation. It is a PDE that is nonlinear in velocity and time-varying. This problem concerns
a 2-D box containing a viscous fluid. Two waves exist in the fluid with different velocities and traveling
in different directions (positive and negative velocities). These fluid waves travel in time, cross and
eventually damp to zero. We consider the 1-D version of this problem to demonstrate the point. We are
concerned with the spatial distribution of velocities in time. The problem is formulated using the finite
element method to approximate the velocity function in space (as the sum of basis functions composed
of two triangular shape functions per element) and finite difference methods to approximate the time
derivatives [7]. We use finite elements since they are generally more accurate (for the same number
of calculations) than are finite differences in approximating the spatial derivatives (i.e., they achieve
the same accuracy as finite difference techniques but with a coarser grid and therefore require fewer
calculations). These methods discretize the partial differential equations and generate a set of time-
dependent, nonlinear algebraic equations which are solved by the OLAP. We linearize the nonlinear
equations by the Newton-Raphson method, which generates a set of LAEs that we solve by iterative
and direct methods. We discuss the processor's performance using the Gauss-Seidel iterative algorithm



and a new optical implementation of the LU direct decomposition [5] (Section 4). Our tests used three
different radices (-2, -4 and -8).

A brief review of the OLAP architecture considered is given in Section 2. The case study problem
is detailed in Section 3 together with the algorithms for solving the nonlinear and linear algebraic
equations. In Section 4, we tabulate and discuss the results of our simulations. Our conclusions are
given in Section 5.

2. Architecture Review

Figure 1 shows the OLAP architecture considered. It is a schematic of a prototype optical linear
algebraic processor [5] that has been fabricated [8] in our laboratories. It is a new space- and time-
integrating architecture that computes one vector-inner-product (VIP) in a single time step T2. It allows
high-accuracy processing using data encoded in either binary, multi-level or negative bases. Previous
research [9,10] has demonstrated its ability to solve a finite element problem in structural mechanics.
This architecture can readily accomodate large problems by a unique diagonal partitioning of the matrix
[5] and achieve higher accuracy by bit partitioning [8]. The range of applications of the optical processor
is quite interdisciplinary since LAE problems arise in many scientific fields.
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Figure 1: Multichannel high-accuracy optical linear algebra processor

I We now briefly describe the operation of the OLAP in Fig. 1. The architecture was introduced several

years ago, thus our description and detail of it is brief. The system consists of multiple point modulators
~at plane P1, a multiple channel acousto-optic (AO) cell at plane P2 and a detector array in plane P3.

The plane P>3 detector array consists of a multiple shift/add architecture.

Figure 1 shows M vertical processing channels in P, and N horizontl channels in the AO cell in

P2. The operands are N-it digitally encoded words, i.e. the same number of bits as the number of

horizontal channels in the AO cell in plane P2. Consider one of the M channels in P, used to multiply

two numbers Z = XY. The bits of X are fed bit serially into one point modulator at P, and the bits

of Y are fed word parallel into P2. The data in P2 travels vertically up the AO cell in word parallel

form and remains in the region of P2 opposite one P, modulator for a time T2. Meanwhile, the PI point



modulator is pulsed on N times during T2, i.e. PI data is input at a rate once every time T where
NT1 = T2. Thus, in a time T2, the N digits of X have been fed to P1. The light from the P point
modulator is imaged horizontally across the region of P2 containing Y. The N AO cell channels are
focused onto the N detector elements in P3. This N-bit word incident on P3 is a partial product of
XY. The detection system shifts this result and the next partial product is formed and added to it, thus
accumulating partial products at P3. One new digit of Z is output from P3 every Ti. After NTI = T2,
the P3 output is a mixed-radix representation of the product of the two encoded numbers X and Y.
This is the DMAC algorithm and it can be applied to data encoded in any radix. Figure 1 shows that
the mixed-radix values are A/D converted, sent to the digital co-processor where they are multiplied by
the appropriate power of the operating radix r and added to the accumulated P3 output at each T1. In
this manner, a radix-r encoding of Z is generated after T2 = NT seconds.

In multi-channel operation, M point modulators at P are presented with data. The light from each
is imaged across a different vertical region of P2 containing one set of N-bit operands. The result from
P3, after T2 seconds, is a VIP of the data at P and P2, accurate to N bits. The fact that the AO cell
data travels up the cell makes vector operations quite efficient, since data can be re-used as it travels
along the cell. In matrix-vector operations, the vector is input to P2 and the matrix to P1, one row to
each point modulator in parallel.

The implementation of a finite element structural mechanics case study [8] demonstrated some of the
- limitations of the original prototype and led to the design of a more stable system employing a new

AC-coupled mode of operation (which is detailed elsewhere [10]) but has the same basic architecture.

2.1 Number Representation and Partitioning

As stated in Section 2, the DMAC algorithm can be used in any base. With higher bases, fewer
digits and OLAP channels N are necessary and operation time T2 decreases, but A/D dynamic iange
requirements increase. We will analyze these tradeoffs.

To handle large matrix-vector problems (i.e., when the length of the vector exceeds M), we use
diagonal partitioning [5] of the matrix. This results in an ordered data flow in which we break the
matrix into diagonal ribbons with M diagonals processed at one time. This method is preferable to
dividing the problem into smaller blocks which is inefficient due to the large amount of bookkeeping
required and the dead time incurred while the P2 cell is emptied and reloaded with new data.

Since there are no carries in DMAC until the final conversion from mixed-radix to the operating radix,
we can process NL digits of the data, store the results, process the next NL digits, etc. [8]. This method
is known as bit-partitioning. In this way we can achieve any desired accuracy with only NL channels at
P2 and P3.

3. Case Study Description

We now detail the case study and algorithms used in our optical processor simulations.

3.1 Burger's Equation

We first detail the CFD equation and the finite element and finite difference discretizations of the



PDE. Burger's equation with the boundary and initial conditions that we used is

&U + --0, O<z< =

u(x,0) = uo(z)i (1)

u(O,t) = u(1,t) = 0

The unknown velocity is u, the fluid viscosity is Y, the spatial and time variables are z and t respectively,
and the boundary conditions at z = 0 and z = 1 are zero. The initial conditions at t = 0 are detailed
in Section 3.2. We discretize x into twenty finite element mesh nodes between X = 0 and z = 1 with
spacing h = 1/20. Using linear finite element functions for the velocity shape functions and constants
for the spatial derivatives, Eq. (1) becomes

Au + B(u)u + Cu = 0, (2)

where uppercase letters denote matrices and lowercase letters denote vectors. Because linear approxi-
mating functions are used in this 1-D problem, the matrices A, B(u) and C are tridiagonal. Their size is
pxp=20x20 since twenty nodes were used in the 1-D finite element mesh. The matrix B(u) is a function
Of the unknown velocity, u, and thus the term B(u)u is nonlinear in u.

We approximate the time-derivative term in Eqs. (1) and (2) with a central finite difference formula.
This approximation provides greater stabiliIy in the solution than does the simpler forward difference

A approximation. Applying this to Eq. (2), the final form of the discretized Burger's equation is

[A + j~t(B(u'+') + C)u-+' = [A - At((u") + )]u". (3)

The superscripts n and n + 1 denote the time index resulting from the central difference formula. With
our choice for the spatial step size (h = 1/20), we find [7] that the time step At=0.005 assures a maximum
error between the finite element method and the exact solution of less than 1%. This is compatable with
typical CFD goals to determine the velocity distribution in space and time accurate to 1%.

Our problem is thus to solve (3) for the velocity u(z) at different time steps. We write Eq. (3) as

-(un+')U"+' 
= E(u")u", (4)

where D and E are tjie matrices in brackets in (3). They are functions of u1+1 and u" (the spatial
velocity distribution at time steps n + 1 and n). Given the present u(x) at t = n we cannot easily
solve (4) for u(z) at t = n + 1, since D is a function of this solution. We use the Newton-Raphson
algorithm to reduce (4) to the solution of different LAEs at different Newton-Raphson iterations. In the
Newton-Raphson algorithm, we first evaluate D using the present uit solution, i.e. we form

D(u')uI"+ = E(u")u" = e", (5)

where en is a known vector. We then solve (5) for u11+ 1 . We denote this solution as U"+1,r, where r is
the Newton-Raphson iteration index. We then refine this u'n+l., solution by solving

in+l, (Un+lr+l - un+I , ) = -R"+1,r (6)

for a refined solution Ufl+ 1,r+ 1. In (6), the matrices J,+l,r (Jacobian) and Rn+lr (residual in Eq. (4))

are

OR (7)
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R = [ +) +r- [•' 0n (8)

and en O- E(un,°)un,°, where un.° is the converged repsonse from the previous time step. New J and
R matrices are then calculated (using the new un+i , +l estimate), substituted into (6), and (6) is solved
for the new un+lr+l.This cycle is repeated until convergence, I u +l'r+l-un+,r 1< CNR, where CNR isthe stopping criterion for the Newton-Raphson iterations. The result is the best solution u"+1 to (3) or
(4) at the present time step n + 1 for a given ENR. We then solve (5) for the next u"+ 2 and refine this
solution using Newton-Raphson (Eq. (6)).

This process thus involves solving the LAE in (5), then solving the LAE in (6), updating (7) and (8)
and resolving the new LAE in (6) for refined solutions until it converges to IVRR. The above procedure
must be repeated for each time step At. In our case, there are twenty spatial values u(z) and - =

= 200 time steps. The Newton-Raphson algorithm has thus reduced a nonlinear problem to a
sequence of linear problems (LAE solutions) that are iteratively refined. Table 1 lists the steps in the
algorithm. The time index is n and the Newton-Raphson interation index at each time step is r. The
initial u°.° vector is used as Un . in the initial Step 2 and we solve for un+ lr = u1, 0 initially. In Steps 3
and 4, we refine this solution until I un+ l r+l - Un+l' j< epJR. Then, we set un+ l~r + l equal to u at the
present time u" in Step 2 and solve the new Eq. (5) for un+1 at the next time step (actually n + 2). The
residual vector Rn + lr in Step 3 is

R [A + At(B(u',") + C)]U"+l,- - [A - -At(B(U o ) + C)]sn'o  (9)

which is a function of known matrices and vectors including the converged Newton-Raphson response
u"' from the.previous time step. The Jacobian matrix is

j,+l, ORn+l*'
- 8 _+ = A + At(B(un+,,r) + B(uYI+ 'r) + C). (10)

For each time step, the algorithm requires the solution of the LAE in Eq. (5) in Step 2 and the
repeated solution of the LAE in Eq. (6) in Step 3 r times. We ignore the time to calculate the new
J and R (as this requires only matrix-vector multiplications and additions). Solving LAEs is thus the
most time-consuming and computationally intense operation. We consider an interative method (Gauss-
Seidel) and a direct method (LU decomposition) to solve the LAEs in Steps 2 and 3 on the optical
processor of Fig. 1.

3.2 Initial Conditions

We now detail the initial conditions at t=0 used in the case study. It has been shown [7 that the
analytical solution to Eq. (1) is

U(X t) = 2r( ezp(-r 2t)sinrz + ezp(-4r 2t)sin27rz)
1 + 1ezp(-r2t)coswz + jezp(-47r2 t)cos2irx (11)

At time t=0.0, our initial conditions in (1) are thus found, from (11), to be

u(z, 0) = 27r(1sinrz + sin2rz)1+ cosirx + cos2rx 2)

This corresponds to a positively-travelling velocity wave in the lefthand portion of our 1-D space and a
negatively-travellirg velocity wave in the righthand region. With these initial velocity waves, the final
velocity at t=1.0 is approximately zero.
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Nonlinear Algorithm Steps

STEP 1 Set initial conditions, u".7 = 0° ,

STEP 2 So ye LAE below for u+ 1 = U,, + I ,r = U + 1,0

D(un),"+1 = en Eq. (5)

where D(un+1 ) in Eq. (4) is approximated by D(u") in Eq. (5)

STEP 3 Refine solution (by Newton-Raphson)

Solve LAE below for un+ l1 ?+l

j7+"r(,n+i.V+l - Uf+lt,) = -Rn+lr Eq (6)

where

Residual vector = Rn+i,r = [D(un+ir)t 'n+lr - n,0

Jacobian = jn+l., = _R"", = A + At(B(Un + l

e' ,0 is a function of the converged response from the previous time step u''

STEP 4 Update J and R and form new Eq. (6), r -r +1

Solve new Eq. (6) for un+i ' ' + 2 , etc.

Repeat until convergence, I n' ,r+ - un+ l r' < CNR

Result is un + i at present time

STEP 5 Go to Step 2

Use Step 4 result u"n+ to solve for un+ 2 , etc.

Repeat Step 2 and iterative Steps 3 and 4 until reach time t=1.0

Table 1: Outline of the alorithm steps used to solve Eq. 4



3.2 LU and Gauss-Seidel Methods

The major computational step in the algorithm is the solution of the LAEs in (5) and (6). We consider
both direct and iterative LAE solution algorithms on the OLAP. The LU direct decomposition method
is easily implemented on the OLAP of Fig. 1 and is the direct solution algorithm of choice for solving
LAEs, since it requires only one vertical channel, i.e. M = 1, for any size matrix [5]. Pivoting is not
required, because our matrix elements are within an order of magnitude of each other. We choose the
Gauss-Seidel method as the iterative LAE solution to be considered, because it is easily implemented and
does not require the calculation of an acceleration parameter. The choice of an acceleration parameter
is difficult when solving nonlinear PDEs because the matrix B(u) changes with each time step iteration
and therefore the optimum acceleration parameter changes also. An attempt to calculate an acceleration
parameter at each iteration step would increase the processing time.

4. Simulation Results

In this Section, we detail the results of our case study simulations. Our purpose is to show that the
OLAP of Fig. I can be used to solve CFD problems, that it can perform bit and matrix partitioning,
operate in a negative base, operate in different radices and that it can solve nonlinear matrix equations
and LAEs by direct and iterative methods.

" Our initial- simulations used standard double precision, N=64 bit, fixed point number representation

(i.e., for radix -2 we assume N=64 channels in the AO cell and N=64 detectors at P3 in Fig. 1). For
larger radices, fewer channels and detectors are necessary to handle the equivalent of 64-bit precision.
With radix -2 encoding, each word is represented by an N = 64 bit word. For radix -4 encoding, 32 digit
words were used and 22 digit words were used with radix -8. In each case, half of the digits represented
the fraction portion of each word and half represented the integer portion. Note that increasing the
magnitude of the radix allows a corresponding decrease in the number of bits necessary to achieve the
same precision. With 22 digit words in radix -8 there is slightly greater precision than 64 bits. However,
22 digits gave the smallest difference, while keeping at least 64 bits and the same number of digits in
the fraction and integer portions of the words. Note that speed increases as the radix is increased, since
N is less and NT = T2. However, the number of output A/D bits increases as the radix increases. In
our studies, the number of AO cell channels and detector channels was assumed to equal the number of
digits required (not bits). The number of processing channels M (the nuilber of LDs) varies with the
algorithm. For the LU algorithm, we require only one (M=1) processing channel. For the Gauss-Seidel
algorithm, we require M=3 processing channels (since the matrix is tridiagonal).

Figure 2 shows a plot of the analytical (solid line) and the optically calculated finite element (dashed
line) velocities for five of the time steps and for radix -4. Identical plots resulted for radices -2 and
-8 (not shown). Both the analytical and optical solution curves are nearly identical at each time step.
Table 2 lists the results of the LU and Gauss-Seidel algorithms for three different negative radices. The
results include the standard deviation a (of the difference between the analytical and optical solutions),
the number Nvp of VIPs required in each algorithm and the processing time in units of T1. The
standard deviation was calculated for each time step and averaged over all 200 time steps, resulting
in the a values listed in Table 2. The standard deviation is a maximum of a=0.034 at t=0.005 and

monotonically decreases to a = 0.00000153 at time t=1.0, giving an average value of 0.0018. We see that

a is the same for all radices and both LAE solution algorithms. This is expected, since the word precision

is nearly identical for all three radices and the stopping criterion in the Newton-Raphson iterations is

the same very small value NENR = 10-5. This value was initially selected since with 64 bits, the Newton-
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Figure 2: Plot of analytical vs finite element solutions as generated by the optical simulator

Raphson iterations provided this accuracy after only r=3 Newton-Raphson iterations. We assigned the
same c stopping criterion to the iterative Gauss-Seidel algorithm. Thus, the same a is expected for all
algorithms and radices. A measure of the percent error between the analytical and optically calculated
solutions is not feasible due to numerous zero-crossings in the curves which tend to exagerate percent
errors. Therefore, we use only the standard deviation between the analytical and optical solutions as
our error measure. However, one can obtain a rough estimate of a percent error by dividing the average
standard deviation value from Table 2 by the maximum velocity value (of the analytical solution) from
Fig. 2. The resulting quotient relates the errors between the analytical and optical solutions to the
velocities from which the errors are calculated and ideally, should be less than 1% (due to the At chosen
in Section 3.1). From Fig. 2, the maximum velocity is seen to be -8 m/sec, thus our percent error
measure is a/u,,., = 0.0018/8. x 100 % = 0.02 %, which is sufficiently small. The 1% design value
in Section 3.1 is a worst case value and assumes an infinite processor accuracy and is independent of
the algorithm used. Thus, our much better accuracy obtained (0.02% versus 1%) is not unexpected.
Because percent error is not a rigorous or standard CFD error measure, we will use only the standard
deviation as our error measure in future work.

The fifth column of Table 2 lists the number (N,,) of optical vector-inner-products required in each
algorithm. For each of the different radices, the iterative Gauss-Seidel method requires approximately
5% more VIPs than the LU direct method. This is not a general result and is due to the fact that
the Gauss-Seidel stopping criterion CGS was set equal to the Newton-Raphson stopping criterion (which
was very small, CNR = CGS = 10-5). For this case study, only r=3 Newton-Rapshon iterations were
required for convergence. Thus, the algorithm rapidly refined the initial LU and Gauss-Seidel solutions
in Step 2 to the proper result. The number of Gauss-Seidel iterations was large (but not excessive), i.e.,
between 19 and 21 iterations in each of the three Newton-Raphson iterations. This was necessary since
the Gauss-Seidel solution had a very small stopping criterion. Similarly, r=3 Newton-Raphson iterations
resulted (rather than r=1 for NR=O. 1 and EGS= 0 .0 1 as we will show later) because of the small CNR

stopping requirement.

The last column lists the processing time Tp for this case study on the system of Fig. 1. The general
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radiz LAE algorithm no. of std. dev. no. of VIPs processing time

digits, N o (Nip) (N,,, x N x TI) , = 15 nsec

-2 LU decomp. 64 0.0018 110,125 - 7.0 x 106 x T1 = 105.7 msec

Gauss-Seidel 64 0.0018 115,083 - 7.4 x 106 x T = 110.4 msec

-4 LU decomp. 32 0.0018 110,125 - 3.5 x 106 x T = 52.9 msec

Gauss-Seidel 32 0.0018 115,083 - 3.7 x 106 x T = 55.2 msec

-8 LU decomp. 22 0.0018 110,125 2.4 x 106 x T = 36.3 maee

Gauss-Seidel 22 0.0018 115,083 - 2.5 x 106 x T, = 38.Omsec

Table 2: Initial simulation results: double-precision operation in the region 0.0 < t < 1.0 with ENR -
10- 5 and CGS = 10- 5

radix LAE algorithm no. of std. dev. no. of ViPs processing time

digits, N a (Nip) (N ,ip x N x T1) , T, = 15 nsec

-2 LU decomp. 64 0.015 9420 - 602.9 x 103 x T = 9.0 msec

Gauss-Seidel 64 0.015 5472 - 350.2 x 103 x T = 5.2 msec

-4 LU decomp. 32 0.015 9420 - 301.4 x 103 X T = 4.5 msec

Gauss-Seidel 32 0.015 5472 - 175.1 x 103 x T1 = 2.6 rnec

-8 LU decomp. 22 0.015 9420 - 207.2 x 103 x 1 = 3.1 rnsec

Gauss-Seidel 22 0.015 5472 ,- 120.4 x 103 x T1 = 1.8 msec

Table 3: Double-precision operation in the region 0.0 < t < 0.1 with CNR=O.1 and CGS = 0.01

expression for Tp is
T, = N.ipT 2 = Nn,,NT (13)

where N,,ip is the total number of VIPs performed by the OLAP in the 200 time steps from t = 0.0 to
t = 1.0. A realistic value of T1 has been shown [5] to be T, = 15 nsec. This value was used to obtain the
numerical results in the last column of Table 2. Note that different values of N are used with different
radices. The speed advantage when processing with higher radices is obvious from these numbers. This
and the ability of the optical processor to solve the nonlinear dynamic PDE by both algorithms are key
points.

The larger N,,,p and Tp for the Gauss-Seidel versus the LU algorithm are not typical (due to small
CNR and COS used). These small c were chosen since three Newton-Raphson iterations produced this
accuracy. As we shall see, this low c value is not necessary. Thusfar, N=64 bit precision has been
assumed. To decouple the algorithm from the processor, we now consider the number of bits required
and the c values needed. To reduce simulation time, we only consider the velocity in some time interval,
rather than from t=0 to steady state (t=l.0). We chose to investigate the velocities over the initial
time interval from t=0.0 to 0.1, where there is the most activity. This applies to all further tests. As



our error measure we use a. Although not shown, the value of o in the region 0.0 < t < 0.1 with

CNR = CGS = 10- 5, is a=0.015. We now consider selecting a larger c to achieve a=0.015 (which provides
sufficient accuracy). We measured a as NR was increased (keeping N=64 bits) and found o-0.015
for cNR _<0.1. We thus selected CNR=0.1. This larger CNR=0.1 value was sufficient, since the initial
accuracy of the uI+2 estimate from (5) was sufficient that the Newton-Raphson algorithm could refine
it in r = 1 Newton-Raphson iteration to cNR = 10-3. For low E values, setting CGS=CNR gave suitable

results. For the larger present CNR value, GS=O-.lCNR is needed (since the Newton-Raphson algorithm
cannot easily refine coarse initial estimates). Thus, by specifying GS=-0.01, we achieve a sufficiently
accurate initial estimate that can be refined by Newton-Raphson. Otherwise, Newton-Raphson does not
converge. Thus, we select Ics=0.01 and ENR= 0 .1. These appear to be new results. The number of

Gauss-Seidel iterations to solve the different LAEs was significantly reduced with the larger cGs=0.01.
Specifically, with CGs=0.01, only eight Gauss-Seidel iterations were necessary to solve for the initial utft+
in (5) and a maximum of ten Gauss-Seidel iterations where necessary to solve the Newton-Raphson LAE
in (6). At larger time steps, i.e. as t approaches 0.1, the number of Gauss-Seidel iterations required was
reduced. With ENR = 0.1 and CGS=0.01, fewer VIPs are thus necessary for Gauss-Seidel than for LU
decomposition, as Table 3 shows. The data in Table 3 for 64 bits, CNR=-.1, CGs=0.01 and 0.0 < t < 0.1
show the same a accuracy (our a=0.015 design goal) for all algorithms and fewer VIPs necessary with
Gauss-Seidel than with LU.

In further tests, we found that if CGS was not small enough with respect to CNR, then the error in the
Gauss-Seidel solution to (6) could not be improved by the Newton-Raphson iterations and jvR could
not be satisfied. Specifically, the Newton-Raphson iterations could not converge. For example, with

=CNR=Ol and-cs=0.8 (i.e. with a more accurate Newton-Raphson stopping criterion), no convergence
was obtained. A useful (and logical) guideline is to make both E values about the same or to set cNR to

be ten times larger than CGS (for larger cNR=0.1 values). Otherwise, Newton-Raphson cannot correct
for Gauss-Seidel errors that occur with a larger CGS. Selecting e is a trial and error procedure in all
Newton-Raphson applications (whether implemented digitally or optically). This appears to be one of
the first quantitative details of the design issue in CFD.

With CNR=0.1 and GS=-.01 fixed, we now consider the minimum number of bits that each algorithm

requires in order to achieve the same a=0.015 reported in Table 3. Figures 3(a) and 3(b) show a' versus
* N for the two algorithms with ENR=O.l and Cs=-001. As seen, both algorithms perform similarly (as

expected) and with approximately N 30 bits, we find no more error than with N=64. At N=24 bits,
*~a increases significantly (with a=0.04 for N=24). Thus, we now fix N=24 bits, CNR=0.1 and EGS=0.01.

We ran the case study with 24 bits, fNR=0.1 and CGs=0.01. The results are shown in Table 4. The

value of a (0.04) is larger than in Table 3 (a = 0.015) because we chose to operate at the N=24 bend in

the curves in Figs. 3(a) and 3(b). The number of VIPs is the same for all radices (for a given algorithm)

because the precision is the same (24 bits) for all the radices. By increasing the number of bits to 30,

or is reduced to 0.015, as shown in Table 5. The number of VIPs remains the same as in Table 4, as

expected. Therefore, the minimum number of bits that maintains a=0.015 is approximately 30 bits.

5. Conclusions

We have shown that the OLAP can solve nonlinear dynamic PDEs using iterative and direct algo-

rithms, with a negative base and with non-binary radices. Our primary purpose was to demonstrate the

new use of an OLAP in the solution of CFD problems. However, other data can be advanced. We have

quantified that the processor operates faster when higher radices are used. We have also advanced a new
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radix LAE min. no. of std. dev. nao. of VIi's processing time

algorithm digits, Nmin a Ni (N,1ip x Nmtn x TI)

with T, = 15 nsec

-2 LU 24 0.04 9420 3.4 msec

Gauss-Seidel 24 0.04 5472 1.9 msec

-4 LU 12 0.04 9420 1.7 msec

Gauss-Seidel 12 0.04 5472 1.0 msec

-8 LU 8 0.04 9420 1.1 msec

Gauss-Seidel 8 0.04 5472 0.7 msec

Table 4: Minimum precision (N=24) operation in the region 0.0 < t < 0.1 with CNR =0.1 and CGS =0.01

radix LAE min. no. of std. dev. no. of VIi's processing time

algorithm digits, Nm,n a 0'i (N'Vi, x Nmuvi, x TI)

with T, = 15 nzsec

-2 LU 30 0.015 9420 4.2 msec

Gauss-Seidel 30 0.015 5472 2.5 msec

-4 LU 15 0.015 9420 2.1 msec

Gauss-Seidel 15 0.015 5472 1.2 msec

-8 LU 10 0.015 9420 1.4 msec

Gauss-Seidel 10 0.015 5472 0.8 msec

Table 5: Minimum precision (N =30) operation in the region 0.0 <z t < 0.1 with CNR =0.1 and CGS =0.01



procedure to determine the stopping criteria for nonlinear algorithm solutions such as Newton-Raphson
and a new procedure to determine the number of bits of precision required in the processor. The OLAP
can solve CFD problems in reasonable times (as we have quantified). We also showed that similar c
values should be used for all iteration steps. We now advance other discussion remarks.

For this case study, the iterative Gauss-Seidel algorithm is faster than the direct LU decomposition
algorithm. This occurs when c is properly chosen. As the dimensionality p of the matrix increases,
the number of VIPs required in LU will rapidly increase (Nip oc p3), whereas the number of Gauss-
Seidel iterations will not increase as rapidly (Nm,, c kp), where k relates to the number of iterations
required. Typical CFD problems have p >700. Thus, the Gauss-Seidel algorithm will be over 50,000
times faster (assuming an average k=10). We note that iterative techniques are popular CFD problem
solution algorithms for this reason. The present case study is a smooth flow problem. For all such
problems, we expect the same trend for Gauss-Seidel to be superior. As p increases, Gauss-Seidel gains
even more preference. For our case study, the dynamic range of the matrix data was - 40 to 1, but 30
bits are still necessary to adequately represent the data and to perform the necessary operations. With
a larger dynamic range, pivoting may be required in LU, further complicating its implementation. With
other CFD problems requiring more Gauss-Seidel iterations, it is realistic to expect that we can run the
processor at low accuracy for a number of iterations and then switch to higher accuracy for the last few
iterations.

We should distinquish between the number of bits necessary and optical systems errors. Specifically,
both the Gauss-Seidel and LU algorithms require the same number of bits, where we assume that the

Ak number of bits given are all accurate. If we consider optical system errors, then there is an additional
preference for the Gauss-Seidel algorithm. This arises since the LU algorithm is more sensitive to
processor errors (which can occur in any bit, e.g. the most-significant bit as well as the least-significant
bit). Iterative algorithms such as Gauss-Seidel are known to be forgiving of such errors. We have shown
that Newton-Raphson cannot correct LAE errors that are too large. Thus, large LU errors (that could
occur within an optical processor) will be disastrous. However, the Gauss-Seidel algorithm can correct
such optical system errors (with an increase in the number of iterations). The combination of iterative
Gauss-Seidel and Newton-Raphson algorithms with similar c is thus very attractive. Since the error
in LU is not known (it can be in the most significant or least significant bits), we cannot adjust c in
Newton-Raphson to correct it. With a Gauss-Seidel / Newton-Raphson algorihm set, there is much
better reason to expect Gauss-Seidel to converge (by including a convergence parameter, the number of
iterations and convergence will be even better).
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ABSTRACT

The results ef our investigation of the applicability of optical processing to Adaptive Phased Array
Radar (APAR) eata processing will be summarized. Subjects that are covered include: (i) new iterative
Fourier Transfo m based technique to determine the array antenna weight vector such that the resulting
antenna pattern has nulls at desired locations. (ii) obtaining the solution of the optimal Wiener weight
vector by botl iterative and direct methods on two laboratory Optical Linear Algebra Processing (OLAP)
systems, and (iii) an investigation of the effects of errors present in OLAP systems on the solution vectors.

1. INTRODUCTION

In modern radar signal processing an array of antennas is used to collect radar signals instead of a
single antenna'. These individual signals are then combined to produce the antenna array output. To
allow control over the shape of the farfield antenna response, the amplitude and phase of the individual
signals are normally modified prior to forming the array output. This operation is equivalent to

, multiplying the complex envelope of each signal by a complex weight factor. Such a phased array antenna
has pattern nulls which can be steered to attenuate strong jammer signals that would leak through the
sidelobes of a fixed pattern antenna.

In Adaptive Phased Array Radar (APAR) signal processing, we seek algorithms to determine the
weights which minimize the jammers' effects while maintaining the required directivity. Unfortunately.
along with its added capabilities, the APAR problem comes with a much higher computational burden
when compared with single antenna systems. Because of the inherent speed and parallelism of optical
processors, their application to this computationally intensive problem should be investigated. Our goal in
this research effort is to evaluate some of the existing APAR algorithms for their suitability to optical
implementation and propose novel algorithms that may not have electronic counterparts. We must look for
algorithms that require repetitive tasks which result in acceptable optical data flow and that are tolerant of
the errors present in an analog optical system. Any purely optical APAR algorithm we propose must
utilize the capabilities of optical processors (such as the instantaneous Fourier transform).

1I. Adaptive Array Processinf

The received signal vector x is comprised of random antenna noise and the sum of the received signals
from the I sources for each of the K antenna elements in the array. The array output y - wt"x is the
weighted sum of the received signals where w is the weight vector and H denotes the Hermitian or
conjugate transpose. Figure I indicates how APAR processing can be divided into communications and
tracking/estimation problems.

When using an antenna array in an application such as communications, the primary goal of many
adaptive processing schemes is to enhance the reception of the desired siInal while suppressing unwanted
signals. The optimal weight vector w for this problem can be .shown to be the solution to a set of
Linear Algebraic Equations (LAEs) of tXte form
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where u is a complex scalar, R is the received signal covariance matrix and r is the correlation

between the received signal vector 'nd the desired signal. It should be noted that XX is Hermitian and
thus has real, non-negative eigenvalues.

An intermediate goal of antenna array processing is the estimation of the farfield signal environment.
This information can include the number of signal sources, their individual signal powers, their locations.

,gW and any correlation between sources. Knowledge of this information is useful for detecting and tracking

objects in applications such as air traffic control, satellite tracking, and weapons control. Knowledge of
the signal environment can then be used to determine which directions to null. Pattern synthesis
techniques can then be used to generate the appropriate weight vector.

Given the information obtained from a source estimation processor, one is faced with the problem of
computing an appropriate weight vector. Normally, these requirements can be condensed into a set of

constraints such as the desired look direction gain and the directions towards which nulls are to be
steered. A major computational task is the calculation of a weight vector which satisfies these constraints.
These constraints can be used along with a minimization of an array performance measure such as
minimizing the array output power.

1.2. Optical Processors

Relevant prior work using simple optical architectures for adaptive processing includes an adaptive

signal predictor3 , a sidelobe canceller4 which uses correlations among auxiliary antennas to modify the
sidelobes of a main antenna, a linear predictor5 , and an adaptive filter . These have made use of optical
systems to perform processing via continuous-time signal correlations, whereas the techniques we are
investigating involve more numerical processing of discrete-time data.

Since it is possible to formulate the APAR problem in terms of vectors and matrices, it is useful to
study how it can be solved using the Optical Liaiar Algebra Processors (OLAPs) available for our use.
An exhaustive discussion of OLAPs is available elsewhere ' . We confine our attention to methods
appropriate for general matrices rather than those with special structures such as Toeplitz or banded

matrices. Other investigators have also studied optical numerical data processing with reference to the

APAR problem9 ' to. The use of alternate number representation schemes, such as the residue number

system"' 2 have been published. Additional methods of increasing processing accuracy through the use

j



* of multimode architectures have also been presented 13

4W The availability of existing laboratory OLAP systems offers a unique opportunity to test prospective

APAR algorithms. While computer simulations of optical processors are useful for running preliminary
tests, the availability of experimental systems allows a more complete characterization of results to be
made. There are two optical systems which have been used through this research effort to obtain the
solution of equation 1. Since the initial development of these systems was not part of this reserch effort,
we only reference the experimental systems here. and additional information may be found elsewhere14

. 15

1.3. Overview of Paper

The remainder of this paper describes specific areas addressed by this research. Section 2 covers an
algorithm based upon the repetitive use of Fourier Transforms for the pattern synthesis problem. We next
address the weight determination problem in Section 3 using iterative methods to solve equation I on an
analog optical MNV processor. A method useful in the characterization of systems capable of changing
from high speed, low accuracy to higher accuracy, slower speed while Implementing an iterative algorithm
is presented in Section 4. The solution of the equation for the optimal weight vector using an encoded
OLAP with a matrix decomposition algorithm is examined in Section 5. We summarize the research in
Section 6.

2. ITERATIVE FOURIER TRANSFORM PATTERN SYNTHESIS

This section proposes and examines an algorithm which can provide a weight vector that places nulls at
desired angles and is well-suited to optical processing. For narrowband signals being received on an
arbitrary. planar, continuous array, the angular gain vector g and the antenna weight vector w are related
through a Fourier Transform. To simplify the discussion, let us limit ourselves to the case of the linear
array with equally spaced antenna elements. This situation can be conveniently written in terms of a
Discrete Fourier Transform. To place antenna response nulls in the jammer directions, we specify (g) q-0,
at the q values corresponding to the jammer angles. The Inverse Fourier transform of g then yields the
weights w. However. due to the limit in the total number of antenna elements, K, the angular resolution
in q is poor. To improve this sampling, we can pad w with zeros so that its new length is N and then
take the transform. In the final weight vector applied to the antenna output, the contribution of these
extra, virtual elements must be zero since they do not correspond to available antenna elements. This
provides two sets of constraints: (i) gain g equal to zero for each jammer location and (ii) antenna
weights for the virtual antenna elements must equal zero. In addition to these, a normalization constraint,
such as forcing the array gain energy or array weight vector energy to a constant, may be required to
prevent the output from decaying to zero.

A method of finding a solution to match constraints in both the time and frequency domains is a
generalization of the Gerchberg-Saxton algorithm 6 . It is known as the Error Reduction algorithm and
Fienup"7 has provided a summary of its use in the retrieval of phase information from intensity image
data. The algorithm involves repeated FT's where the resulting functions are forced to meet the
constraints first in one domain and then in the other. A block diagram of this algorithm is presented in
Figure 2. Starting with the weight vector w, it is first transformed into the angular gain domain by the
DFT block. The angular constraints are then applied to the gain vector followed by the inverse DFT to
return to the weight domain. Finally, the antenna constraints are imposed to complete one iteration of the
algorithm.

The repetitive use of the Fourier transform operation in this algorithm is well-suited to implementation
on an optical system. A simple example of such an optical implementation has previously been proposed
for use in the extrapolation of bandlimited images1 s . The basic system uses an optical FT lens for
performing the Fourier transforms, masks to impose the constraints in each domain, and mirrors to
provide the iterative feedback. Because of its two dimensional nature, this implementation can be easily
extended to pattern synthesis for 2-D arrays of an arbitrary geometry.
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We have previously presented our investigation into the behavior of this algorithm as applied to the
discrete case' The algorithm is first written in matrix/vector form and then its transient and steady-state
responses may be derived. Under specific investigation are the values of the weights and the angular
domain constraint error as functions of the number of iterations of this algorithm. To assist in this
analysis, a new matrix operator has been introduced which greatly simplifies the required derivations. We
have derived the conditions required for the algorithm to converge and have shown that when these
conditions are met, the steady-state error theoretically approaches zero. We are eventually interested in the
location and depth of the nulls, along with the rate of convergence of this algorithm. Computer
simulation and numerical evaluations of the analytical results for several APAR test scenarios have been
run and verify our analysis.

3. ITERATIVE LAE SOLUTION USING OLAPS - THE STEEPEST DESCENT METHOD

This section examines the use of some of the classical, gradient based algorithms for the solution of a
set of ..AEs20 .  As discussed in Section I .I. the fact that these algorithms require a large number of
matrix/vector or vector/vector multiplications immediately suggests their implementation on Optical Linear
Algebra Processors. Systems that have been optimized for a simple matrix operation, such as M/V
multiplication, are thus well suited for this application. The iterative algorithms appear promising due to
their simple, repetitive nature. However, they also suffer from the drawback that the number of iterations
required to reach a solution with a given accuracy is not known a priori. In this section we describe the
digital simulations and laboratory experimentation used to evaluate the applicability of these methods to the
optical processing systems we have available.

3.1. Steepest Descent Alxorithm

A goal of optimal adaptive array processing is to obtain the weight vector in equation I which
minimizes the expected squared error between the array output and the desired signal. For the linear
array this error is a quadratic function of the weight vector w. Descent methods based upon the local
gradients of the error surface can be used to find the w that satisfies this criterion. The method of
steepest descent is characterized by the weight update equatn

w(n+ 1) - (I- 215R.)w(n)+ 26r d  (2)

or
w(n+ I) - w(n) - 2 0RXw(n) + 21rd (3)



where is the step size parameter which controls the rate of convergence. The limits on J3 to ensure
convergence2 are 0 < 13 < I( maximum eigenvalue of R ). The algorithms in equations 2 and 3 use the
covariance matrix RX and determine the updated weigg vector w(n4t-) using matrix/vector multiplications
with the weight vector w(n). Thus, we can use the advantages of the high-speed optical M/V processors
for these algorithms.

Computer simulations have been run to test these algorithms in the presence of optical errors using a
precomputed R . The starting weight vector was chosen to provide unity gain at zero degrees, where the
desired signal is located. In both cases, 1 was chosen to be well within the range of values allowable
for convergence. This set of simulations was run using a simple error model assuming five percent
optical (both static and dynamic) errors. When run with no processor errors, both forms of the algorithm
reached steady-state levels after less than fifty iterations. However. in the presence of errors, the two
updating equations behave differently. Equation 2 begins to adapt correctly, however the jammer plus
noise power starts to increase for subsequent iterations. At the same time, the signal power decreases.
forming a notch that nulls the desired signal and then increases, following the trend of the jammer plus
noise power. This behavior indicates a steadily increasing antenna gain and is unacceptable. Simulations
using adaptive equation 3 maintain the signal power nearly constant at the optimal level. The jammer plus
noise power stabilizes at a level slightly above the optimal level. Through the use of different levels of
processor error, it was observed that the major effect of the static error vector is the rate at which the
power obtained with equation 2 increases and in the offset from the optimal level for equation 3. The
temporal error vector seems to cause the rapid fluctuations about these basic trends.

The algorithms in equations 3 and 2 are analytically identical, however, our simulations have shown
that the algorithm in equation 3 is much less sensitive to noise in the optical M/V system than the
algorithm in equation 2. Even though equation 3 requires an extra vector addition in each iteration, its
superiority over the algorithm in equation 2 for optical implementation has been demonstrated. While both
algorithms work well in the absence of processing errors, we have shown the importance of reevaluating

___ the existing algorithms for optical implementation.

3.2. Experimental System

Although computer simulations can provide useful information concerning the performance of a system,
they can only be as accurate as the underlying system models on which they are based. The availability
of a laboratory optical system provides a unique opportunity to test the performance of an algorithm on an
a,-mal optical system. The e--,er;r-,ntal system used for this portion of the research is a frequency
multiplexed acousto-optic (AO) matrix/vector processor. A simplified schematic of this processor t" is shown
in Figure 3. This system had been constructed by other researchers in our laboratories as pan of other
research projects. Full details on the system and its initial testing are available elsewhere2 t .

Initial experiments with the laboratory system indicate that the limited accuracy of the analog system
presents the greatest impediment to its use for APAR processing. However, methods to increase the
system accuracy through encoding or coherent detection are means to get around this problem.

3.3. Relationship Between Power and Steepest Descent Methods

An interesting relationship that we have not found reported in the APAR literature can be obtained by
examining the steepest descent method of equation 2 when rxd-0, i.e.,

w(n+ 1) - (I- 21SRXX)w(n). (4)

This case occurs in the estimation problem which has no desired signal. If the weight vector is further
constrained to a specific length; i.e. w H(n)w(n)- constant by scaling after each iteration, then this method
becomes equivalent to the shifted version of the Power Method2 0 . This method can be used to find the
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minimal eigenvector of the matrix R when 0< 3< 1I/(X +X ), where the minimum and maximum
eigenvalues of R are denoted by X . and X respectiveoy nmbinations of the minimal e ienvectors
of the covariance matrix can be use"to obtalna~estimates of the signal locations and strengths . The
importance of this relationship is the manner in which it ties together the spectral estimation methods with
the simple, iterative weight determination methods.

4. VARIABLE ACCURACY OLAPS - SPEED/ACCURACY TRADEOFFS

Conventional optical processing has generally been analog in nature and thus the accuracy of the output
AM has been limited. For example, the analog processor discussed in Section 3 may not be accurate enough

to obtain a weight vector which provides the required null depths or SNR. More recently, techniques for
obtaining higher accuracy through the encoding of numerical data have been applied to optical
processors 23 24 . The increase in accuracy is generally accompanied by a reduction in processing speed or
an increase in hardware complexity. With some architectures, it is possible to select processing modes
having different accuracies but which run on the same hardware. These systems can be divided into those
that can operate in either analog or encoded modes, or those whose level of encoding is variable. The
processors shown in Figures 3 and 4 are examples of systems which can operate in several accuracy
modes.

Processors supporting several accuracy modes, combined with an iterative algorithm, offer the ability to
begin calculations with comparatively fast. low accuracy steps and then finish with slower, high accuracy
steps to ultimately provide an accurate solution to a system of linear algebraic equations (LAEs). It is
thus useful to be able to determine analytically the effects of processor errors on the solution vector. This
allows a direct comparison between processing systems- having different accuracies, or between different
operating modes of processors which are able to dynamically change their accuracy.

We combine the analytical results for the convergence of iterative methods with the accuracies of the
optical processors to analyze the effects of switching from low to high accuracy modes2. An important
question is whether the ability to switch between low and high accuracy processing modes can provide a
useful gain in speed over using just the high accuracy mode, while maintaining the solution accuracy of
the high accuracy processing. Through use of a classical analysis2 6 . we obtain a relationship between the
accuracy in the solution obtained using the iterative algorithm and the ntmber of processing iterations.
This analysis is applied to simple test cases, representative of APAR problems, and is numerically
evaluated to provide a family of curves illustrating the dependence of solution accuracy based upon the
basic system accuracy and the number of iterations. These results .are then interpreted for specific optical
architectures to determine the best case gain in processing speed realized through the use of a variable
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accuracy processing.

This analysis is useful for the characterization of the convergence properties of the steepest descent
method in the presence of processing errors. We have applied this analysis to assist in the determination
of the maximum allowable processor error level that can be tolerated while maintaining a desired accuracy
in the solution vector. An important consideration is that an algorithm which is converging to the correct
solution may eventually reach a point where continued updates degrade the solution. Sometime before this
point is reached, the algorithm should be either terminated, or switched into a higher accuracy processing
mode. Although a practical method for the online estimation of the switching point is not proposed here.
the techniques presented in this section can be used as tools which can be applied to a given processing
architecture to estimate the utility of switching accuracy modes. Improvements in processing speed as a
result of switching from low to high accuracy, as opposed to merely running the processor at full
accuracy. are extremely dependent on the configuration of the processor, the structure of the LAE. and the
starting vector. It is possible that a gradual improvement in the processor accuracy may provide an even
greater advantage in processing speed. Another possible situation would be to start by using analog
processing and t',en switch to encoded processing to obtain the higher level accuracy. These situations can
be evaluated usng this technique for specific processors. Decisions made using these relations must be
applied with caition since sufficiently precise estimates of the processor error and processing time must be
used to obtain practical results.

5. DIRECT LAE SOLUTION USING OLAPS - GAUSS ELIMINATION

One of the most familiar methods of solving a set of LAEs consists of converting the matrix to upper
triangular form and then completing the solution through back-substitution20 . One important advantage of
this approach is that the number of steps required to obtain the solution is known a priori and is
independent of the actual data. A problem with the matrix decomposition algorithms is that errors
introduced early in the computations tend to be magnified in the subsequent steps. This occurs since
there is no feedback to allow self-correction of the errors and necessitates the implementation of this
algorithm on a high accuracy processor. A version of this algorithm, where the data flow has been
designed specifically for a high accuracy optical M/V multiplication system, has previously been reported27 .
We have demonstrated the use of this algorithm on a laboratory optical system to obtain the solution for
the optimal weight vector 28 . The specific system is a 10 channel AO linear algebra processor' 4 that uses
binary encoded numbers to provide greater accuracy. A schematic of this optical system is shown in
Figure 4. We have also investigated, through digital simulation, the effects of data truncation to different
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finite word sizes and the use of various scale factors on the input data. Null depths in excess of 90 dB



were obtained for test scenarios using 21 bit processing on the optical system, yielding essentially optimal

antenna performance.

6. CONCLUDING REMARKS

In the preceding sections, we have provided an overview of our investigation of several areas where
optical data processing techniques are applicable to APAR problems. Although many different topics have
been investigated, each addressing a different aspect of optical processing techniques, the unifying theme is
optical processing of ApAR data.

A new iterative technique has been applied to the pattern synthesis problem. The algorithm provides a
weight vector which matches a set of constraints on the placement of nulls in the farfield pattern. The
algorithm makes excellent use of the optical Fourier transform property. Numerical evaluations for specific
test cases demonstrate successful operation of this algorithm.

The equation for the optimal Wiener weight vector has been solved by both iterative and direct
techniques on two laboratory Optical Linear Algebra Processing (OLAP) systems. Iterative techniques were
implemented on a low accuracy analog system, while direct techniques were used with high accuracy,
encoded systems. Solutions obtained on the encoded optical system have been essentially identical to those
obtained using commercially available software routines and floating point arithmetic on a minicomputer.
These results clearly demonstrated that optical systems can be applied even when the demands on solution
accuracy are high.

Investigations have also been carried out concerning the effects of errors present in OLAP systems on
the solution vector obtained through an iterative algorithm. Examples demonstrate the existence of a
transition point where further iterations either do not improve the solution or actually degrade the solution.
We used these transition points to explore the prospect of running an optical system initially in a high

Aspeed, low accuracy mode followed by a lower speed, higher accuracy mode to obtain a high accuracy
solution. For the example processor and scenarios that were analyzed, a net increase in processing speed
was realized using this technique.

It has been demonstrated through laboratory experiments, theoretical analysis, and computer simulation,
that there are several niches where optical signal processing provides useful results for APAR problems.
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Fhe first optical laboratory system results employing a direct LU decomposition solution ofa system of linear algebraic equa- •

tions are presented for a finite element problem solution. This also represents the first laboratory demonstration of the use of sign-
magnitude negative number representation as well as new bit partitioning techniques to increase the accuracy of an optical en-
coded processor beyond the number of bit channels available.

i. Introduction LDs) at P1, each imaged onto a separate vertical re- 0
gion of a multi-channel acousto-optic (AO) cell at

Optical matrix-vector processors [ I ] represent the P,, with the light leaving P, integrated vertically onto
major elements in artificial neural networks [2], as- a linear CCD shift register detector array with A/D
sociative processors [31, optical crossbar switches converters and adders on each output detector. This
[4], adaptive processors, and general linear alge- architecture was introduced several years ago [7] and
braic optical array processors [5]. Such systems have its optical laboratory realization was recently de- -0
seen little laboratory data results. In this paper, we scribed [ 6]. Thus, our description and detail of it is
consider the initial use of an optical laboratory ma- brief and our emphasis will be on its laboratory per-
trix-vector processor [ 6] operating on encoded data formance and use in the solution of a finite element
to provide the high-accuracy processing required in problem in structural mechanics.
the solution of a finite element problem. These re- We now briefly describe the use of the system for
sults offer a new application (finite element solu- high-accuracy optical linear algebra operations. Con-
tions) for optical matrix-vector processors and sider one of theM ./vertical processing channels of the
provide the first laboratory data on the direct solu- system used to multiply two numbers. The encoded
tton of a system of linear algcbraic equations on an digits of one word are fed sequentially to one of the
optical laboratory processor. Section 2 briefly re- P, point modulator and the digits of the second word
views the optical laboratory processor used [6,7] and are in parallel to the AO cell at P. The data for the
our new one-channel LU decomposition algorithm second word will be present in one vertical section
[ 71. Section 3 advances the problem case study con- of the AO cell for a time F, during which the P, point
sidered and the algorithm used. Section 4 presents modulator opposite this region cf the AO cell is
laboratory data obtained and section 5 advances our pulsed on each T. Each P, modulator is pulsed on
summary remarks. N times for each word (each T2) with the N digits

of the first word. Thus, NT, = T.. Each T, one digit
of the first word is multiplied by the second word

2. Laboratory system and the output product is formed on the detectors at
P3. The contents of P, are then shifted, the next

Fig. I shows the optical processor we consider [ 7 ]. product is formed and added to the prior one. thus
It employs M point modulators (the laser diodes, accumulating partial products at P,. After NT, the

) 030-4018/88/$03.50 © Elsevier Science Publishers B.V. 329
(North-Holland Physics Publishing Division)
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Fig. 1. Multi-channel high accuracy time and space integrating architecture. S

P, output is the mixed radix representation of the employed only N=3 of the 32 available AO cell
product of the two encoded numbers. These scalar channels. This would typically restrict the system's
multiplications occur in parallel on the M sections of precision to 2 '=23 or 3 bits. However, the DMAC
the system for M different pairs of numbers. Thus, algorithm allows one to process the different bits of 0
every T.= NTI, the system computes an M-element the word separately (since no carries are required
vector inner product (VIP). The mixed radix output until the final mixed radix to binary conversion is
can be converted to conventional binary by A/D done, and this need not be done after each VIP). The
conversion and with a shift and add of successive problem we consider requires B= 21 bit accuracy. We
digits as they emerge from P. This is the digital mul- achieve this by processing 3 bits of each word each
tiplication by analog convolution (DMAC) [ 8,9] al- T. Thus, we operate the system with
gorithm for achieving high-accuracy multiplications. T = (B+ N- I ) T, = 23T, and produce a VIP every
This algorithm can be applied to data encoded in any (B+N- I )(B/N) T, =7T2. where T, =0.1 /as for the
base. However, our present data will use only base- laboratory data tests reported upon here. This dem-
2 encoding. onstrates the added flexibility of this system to

Many techniques exist to represent bipolar and achieve any desired accuracy by bit partitioning and
complex-valued data on such processors [I]. Our represents a most unique hardware/accuracy/speed
prescnt application requires only bipolar data and tradeoff possible in this architecture.
the algorithm we employ requires only one channel Another attractive property of the system of fig. I
(M = I ) of the system. Thus, we employ a sign-mag- is its ability to easily perform LU decomposition [ 7 ].
nitude negative number representation. In the pres- Our laboratory demonstratton employs this algo-
ent laboratory system, the AO cell has an aperture rithm and thus we briefly review its implementation.
time T,= 5 ps. With T,=250 ns and.tI= 10. new P, To solve Ax=b for x by LU decomposition, we de-
data is entered every T =25 ns (a 40 MHz rate per compose the matrix A into A=LU (where L and U
channel). The system allows easy partitioning of are lower and upper triangular matrices). This al-
problems in which the dimensionality of the matrix lows us to solve the original problem by back sub-
exceeds that (Al) of the processor. This is achieved stitution. The decomposition is achieved by
by diagonal partitioning as detailed elsewhere [ 7 ]. multiplying A successively by N decomposition ma-
We employ this technique in the data flow on the trices P,, (for a matrix A of size NXN). Synthesis
system by feeding Vf of the diagonals of the matrix of the decomposition matrix is trivial and requires
to P, and the vector data to P. to achieve a matrix- only the elements of one column of the P,,,A,,,, =A
vector multiplication. matrix calculated just previously. The structure of

In the laboratory system used in this paper, we each P,,, is quite simple (its diagonal elements are all

330
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one and it has non-zero elements in only column m laboratory processor. We selected an aluminum plate
below the diagonal, with all other entries being zero). 6' x 8' x 1" divided into 8 rectangular plate bending 0
Thus, the P,,A,,. matrix-matrix multiplications finite element regions as shown in fig. 3. The struc-
required can be obtained using only one channel ture has M= 15 nodes with D= 3 degrees of freedom
( M= I ) of our system as shown in fig. 2 and as we (displacements. etc.) per node for a total of
now discuss. The single non-zero off-diagonal ele- N=MXD=45 degrees of freedom describing the
ments in each row of P,,, are fed time-sequentially to system. An NXN stiffness matrix K describes the
the single P, modulator and the elements of A are system. Optimal node numbering was used to reduce
fed word parallel to the AO cell at P, and (after a the matrix bandwidth to 29. The boundary condi-
delay) are also fed to the output from the P3 detec- tions involved clamping the top and left edges (the
tor. Thus, taking advantage of the structure of the elements denoted by an x in fig. 3). A force was ap-
LU decomposition matrix allows us to use the one plied in the z direction to the bottom right node (case
channel system of fig. 2 for LU decomposition. In I ) and to this node and the adjacent edge nodes (case
our LU algorithms for the Ax=b example, we apply 2). These external loads and forces together with the
P,, to the augmented matrix A,,, which has an ad- boundary conditions are described by the N element
ditional column with the vector b appended. By ap- force vector p. The problem is to calculate the three
plying P,,, to A and b, we produce one row of the degrees of freedom at the 8 unclamped nodes (24
matrix U and one element of the new unknowns), which are described by the N-element
Ux=b'=L-'b=Pb vector each T,. where vector of displacements d. This is achieved by solv-
P = P,P...P.... =L - .These U and b' elements are ing the system of linear algebraic equatins Kd=p 0
then fed to the processor of fig. I (or a digital pro- for d.
cessor) to solve the upper triangular Ux=b' equa-
tion for the final x solution by back substitution [ 10].

4. Optical laboratory system results

3. Finite element case study The one-channel system of fig. 2 with three AO cell

channels partitioned for 21-bit accuracy was used to
The case study chosen for the laboratory system solve the Kd=p problem by LU decomposition. In

involved the solution ofa plate bending problem for tables I and 2 we show the results obtained. Column
the displacements at all nodes with different loading one lists the 24 internal node degrees of freedom to
forces and boundary conditions present. This prob- be calculated. The values obtained on our simulator
lem was chosen since it was modeled and simulated are listed in column two and the results obtained on
earlier [ 11]. We thus only highlight it here, since our the optical laboratory system are given in column
present purpose is to solve the problem on an optical three. As seen, all results are identical, thus indicat-

02

OFF-DIAGONAL IEC0
NON-ZERO
ELEMENT UTPUT

DATA

OELAY

Fig. 2. ()ne-channel Ll' decomposition architecture for matrix decomposition.
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X Clomped node Table 2

Free node Simulated and opticalb calculated values for the 24 unknown
displacement vector components for case 2.

Solution Intel Optical
-ector simulator results

results

1(0) 12.767 12.767

11il) -0.204 -0.204
o(2) 0.255 0.255

Force 11(3) 4.140 4.140
1(4) -0.051 -0.051

1(5) C.199 0.199
Fig. 3. The aluminum plate finite element structure used for our Jl 6) 8.038 8.038

case stud%. 1()7) -0.186 -0.186
,'8) 0.158 0.158
0(9) 2.646 2.646

J(110) -0.064 -0.064
ing that the optical processor's results are perfect and IlI I ) 0.128 0.128
that the system produced no errors in all solutions i1l2) 4.020 4.020
calculated. .1(13) -0.145 -0.145

114) 0.076 0.076
0115) 1.264 1.264
Nl16) -0.049 -0.049 0

Table I .1(17) 0.065 0.065
.v(18)1.1761.176

Simulated and opticall. calculated alues for the 24 unknown i 81 1.176
1-(19) -0.089 -0.089displacement ector components for case 1. i 20) 0.016 0.016

O2) 0.328 0.328
Solution Intel Optic'tl i y(21) -0.027 -0.027
vector simulator results t1 23) 0.020 0.020

results

V(O) 25.139 25.139

d) -0.318 -0.318 5. Summary and conclusion
vI 21 0.460 0.460

9.324 9 124 The optical laboratory system data described have
1(4) -0.123 -0.12 demonstrated many new points: sign-magnitude( 5) 0.400 0.400 I
0(6) 17.459 17.459 negative number representation. partitioning of
k(7) -0.335 -0.335 problems larger than the processor's size, bit-parti-
o(8) 0.340 0.340 tioning to increase the accuracy of the system be-
(9) 5.96- 5.967 yond the number of bit channels in the processor.

V(10) -o. i038 -0. i8 the first direct solution ofa system of linear algebraic.,(I I ) 0.280 0.280

v(12) 9.334 9.334 equations, a new one-channel LU decomposition al-
V(13) -0.318 -0.318 gorithm, and the first use of ptical processors for
014) 0. ! 81 0. 18 the solution of finite element problems in structural
NVl 5) 2.974 2.97- mechanics.

S6 ) - 0.1 - 1).I i0 The laboratory system described used an AO cell
k(17) 0.150 0.150
\(181 2.834 2.834 (bandwidth BW=50 MHz) at P, and a 10-channel
x(19) -0.210 -0.210 AO cell (BW= 10 MHz) at P. Assuming a 20-chan-
\(20) 0.040 0.040 nel AO cell at P1. the system performs one 20-bit
1(21) 0.8)9 0.809 multiplication in 20/(50 MHz)= 20(0.02) =0.4 ps
'(221 -0.066 -0.0366
\f23) o.049 -. 049 or 2.5 MOPS (millions of operations per second).This is quite competitive with personal computer co-

332

0 0 0 0 0 • 0 0 • 0 0 • 0 • S • A



Volume 65. number 5 OPTICS C~OMN I\C ATIONS I March 198

processors (whose 5 MHz clock rate yields 1 MOP Refei-ences
performance. typically). With other AO cells, one can
easily increase the optical system's bandwidth to I
GHz (a factor of 20 improvement). With .11= )10 11j Proc IEEE. Vol. -2. Special Issue on ((plical Computing.

channels at the input plane. we obtain an additional Ju 1984.
[:IoptcalSocctot'nirica. Meeting on O ptical ( ompul-factor of 10 improvement. Thus, a factor of 200 im- ing paoe oct oa arch197

provement or 2.5( 200) =500 MOP performance is [31 D). (.asasent and R. Krishnapurarn. Appi. Optics 26 (198 1)
not unrealistic. R,41.

[41 Optical Engineering. Special Issue on O ptical Intcrciiinec-
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ABSTRACT

An analog optical matrix-vector processor with 10-bit accuracy is described. The operating mode
of the various components of the system and the system architecture are reviewed. The system is
capable of handling bipolar and complex-valued data with no loss in throughput. Various applications
of this architecture and initial laboratory data and simulation results are provided. Applications
addressed include: finite impulse response filters, two high/low accuracy algorithms and systems for
solving linear algebraic equations, a correlation cancellation loop processor and new algorithms and
architectures for the discrete and continuous steepest descent algorithms and solutions, plus
preconditioning algorithms and associated techniques for these systems, and finally constrained LAE
solutions for reduced accuracy processors (using ridge regression techniques).

1. INTRODUCTION

Optical matrix-vector processors [1) are viable numerical processor architectures. This is especially
true if these systems are operated in an analog mode (since this increases their throughput
significantly and avoids the need for A/D converters). Such architectures must achieve 8-10 bit
accuracy to be viable. Most proposed architectures can achieve only 5-6 bit accuracy and are thus
significantly limited in their use. Section 2 reviews the component operating modes required to
achieve such performance and provides the analysis of one such optical processor capable of this
required performance 12). Section 3 addresses several applications, algorithms and architectures for
this system. These include: finite impulse response (FIR) filters, two high/low accuracy algorithms to
improve the results of a linear algebraic equation (LAE) solution and to achieve higher accuracy in an
LAE solution, and finally a new correlation cancellation loop analog processor. Section 4 addresses
fundamental issues associated with the gradient descent iterative algorithms. These include discrete
and new continuous algorithms. The effect of processor accuracy on the problem stability and the
associated processor architecture required are also addressed and quantified. Quantitative data that
verifies our theoretical analysis is included. Section 5 advances an algorithm to modify an LAE
solution to allow reasonable results to be obtained on a processor of limited accuracy. The algorithm
requires solution of a minimization problem with a constraint on the accuracy of the processor. The
resultant algorithm solution to this constrained problem requires ridge regression techniques to
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FIGURE 2: 2-D matrix-vector version of the system of Figure 1.

no loss in throughput. These represent several very attractive and practical aspects of this system.

3. INITIAL APPLICATION DISCUSSION

The basic space integrating heterodyne processor of Figure 1 functions directly as a FIR filter, as
shown in Figure 3. The complex filter weights wi(Tr) are fed to the LDs, the siguial to be filtered a(t)
is fed to the AO cell, and the filter function



This is the error in the solution. The magnitude ofr is expected to be on the order of the accuracy of
the optical processor (i.e. 0.1% for a 10-bit system). When a more accurate answer is required, we
scale r by s to form sgk at cycle k through the full high/low accuracy processor. This scaling increases
the value of Ik at cycle k through the processor. This scaling is necessary to increase 4 to allow an
analog optical processor to refine and improve the accuracy of the result. After scaling 1k, we use a

low accuracy optical processor to solve the new scaled LAE problem

A y. = Sik. (5)

The refined solution after cycle k+l is the refined solution with improved accuracy

2k+1 =k E (6)

The procedure of calculating estimates xk of x iteratively, refining and scaling the residual error (to
high accuracy) and repeating the iterative algorithm (with a scaled vector) on an analog processor to
improve the accuracy of the result represents an attractive and viable use of an optical processor to
achieve high accuracy LAE solutions.

The next application we consider for an analog optical processor is as a correlation cancellation
loop system. The scenario envisioned includes a directional antenna whose output m(t) is the desired
signal plus sidelobe jammers, and an omnidirectional adjunct antenna, whose output, which we denote
by a(t), includes primarily the jammer signal. The basic correlation cancellation loop algorithm now
follows.

An adaptive estimate s(t) of the signal in the main channel is calculated from the omnidirectional
antenna output a(t), using the system as an FIR filter, as

s (t)= F wia(t-'T.). (7)

We then form the difference between r(t) and the estimate s(t), i.e. we form the residue

r(t)-= m(t) - Z wia(t-'.)" (8)

The weights wi are updated and computed as

wi(t,ri) = Of t a(u-ri)r*(u)du. (9)

A LC filter performs the time integration noted in Eq.(9). Adaptation continues until no correlated
noise components remain, i.e. until



necessary, because of its higher throughput. The algorithm used to solve A x = b is

!k+1 -(Xk k ). (10)

We have performed a new accuracy and stability analysis of this algorithm that has related optical
system accuracy to APAR (adaptive phased array radar) performance, using signal-to-interference plus
noise ratio (SNIR) as the performance measure. Brief remarks are now advanced on this algorithm,
architecture and our analysis.

Errors in b and A affect the accuracy of the result obtained x. However, errors in the optical
representation of A (due to optical system component performance and accuracy) are most important
as they affect the algorithm's stability (i.e. does the algorithm converge to a useful solution?). The
issues to be addressed are: does the algorithm converge?, is the solution obtained useful?, and how
fast is the solution obtained? Errors lei i in the representation of A thus determines stability. Our

new analysis shows that stability requires

leii I < V C(A), (1

where N is the dimensionality of A (i.e. the dimensionality of the adaptive array) and C(A) is the
condition number of A. If Jeij exceeds the limit in Eq.(11), optical errors can render A to be singular,

preventing algorithm convergence and producing a meaningless solution. For these reasons, the errors
in the representation of A are of major concern. Given a processor accuracy of B-bits, i.e. JeijJ<2 "B ,

the condition number of A is limited to V'N'2B for stability reasons. As an example, consider a B

9-bit processor, then this system can solve adaptive array problems with matrices whose condition
number satisfies C<2500 and with N = 25 adaptive elements. This represents a quite useful system
for many diverse AFAR applications.

To quantify the performance possible, consider the APAR scenario A: a linear phased array with
the desired signal or beam direction being 0 *, with received noise -10 dB below the desired signal, and
with jammers 20 dB above the desired signal at 20* and 300. We consider the resultant output
jammer and signal power versus iteration number for 3 cases: a 32-bit floating point processor
(digital accuracy), a 10-bit amplitude processor with 0.01 radian phase errors (typical of the OLHNP
system described here) and a 6-bit amplitude processor with no phase errors (typical of the classic
optical intensity processor). Figure 5 shows the results obtained. As seen, the 10-bit and floating
point results are approximately the same, with the jammer power reduced 18 dB below the signal and
with similar convergence for both cases. The 6-bit processor initially adapts, but degrades as
iterations continue (due to processor errors) such that the jammer and signal powers are equal after
250 iterations. The APAR scenario B considers many multiple jammers, with jammers 10 dB above
the signal at 35 0, 400, 45 °, and -10 and jammers 20 dB above the signal at -60* and -70*, plus
receiver noise 10 dB below the signal level (0 dB) present also. The data for the 3 processors for this
scenario are shown in Figure 6. The 10-bit analog and floating point systems perform comparably
(SNIR for both are within 2 dB). The 6-bit processor yields a negative SNIR and its solution is thus
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FIGURE 7: Continuous steepest descent algorithm architecture.

5. ALGORITHM LAE SOLUTIONS WITH LIMITED PROCESSOR

ACCURACY CONSTRAINTS f3l

We recently 13] devised and tested a new LAE solution algorithm for APAR (suitable for other
applications also), in which we maximized the array gain (SNIR) subject to a constraint on the
sensitivity of the solution weights w to errors in the processor employed. This results in the solution
of an LAE in which the diagonal elements of the matrix are perturbed by a constant. This reduces
the condition number of the matrix and thus satisfies the accuracy or solution-sensitivity constraint.
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FIGURE 9: Demonstration of laser diode (LD) linear dynamic range and accuracy of 10-bits.

frequencies present (Figure 10) correspond to lines at the dc term (due to local oscillator leakage), the
difference frequency (8 MHz), the second harmonic (16 MHz) which is due to detector amplifier
nonlinearities (this term can be reduced by higher-performance detector amplifiers) and external RF
interference in the laboratory (at 14 MHz). The ratio of the strength of the difference signal at 8 MHz
with respect to the background shows a system dynamic range approaching 60 dB to be possible.

The bipolar multiplication ability of this system is demonstrated in Figure 11. The inputs are the
bottom 2 traces with polarities indicated, and the output is the upper trace. Figure 12 shows a
photograph of the optical laboratory system used.

7. SUMMARY AND CONCLUSION

We have demonstrated that analog optical processors with 10-bit accuracy are possible and

feasible and that there is sufficient motivation and need for such systems. The processor described
operates the various components of the system in the proper modes for linear operation and
temperature stability. The use of heterodyne detection and quadrature modulation provides the
system with temperature stability, as well as the ability to handle bipolar/complex data with no loss
in system throughput. Various applications and algorithms for use on this system were addressed.
These included: FIR filters, correlation cancellation loop processors, discrete steepest descent systems,
continuous steepest descent processors, several hybrid low/high accuracy processors, and new
constraint algorithm solutions to reduce the condition number of the problem being addressed.
Laboratory data was provided to show 60-70 dB performance and 10-bit linear dynamic range
possible, as well as bipolar processing with no loss in system throughput.
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ABSTRACT

We consider an analog (linear) heterodyned linear algebraic optical processor for adaptive
phased array radar (APAR). Its use in solving the discrete steepest descent (DSD) algorithm is
considered. New stability and performance measure expressions are used (that relate the
scenario and the processor's accuracy) and their verification is obtained by scenario tests.
Extensions to more complex problems by terminating the number of iterations and by matrix
preconditioning are discussed and demonstrated.

1. INTRODUCTION

Earlier [1], we advanced an optical linear heterodyned numerical processor (OLHNP)
architecture and described the operation of its components and its advantages. These include
the use of analog optics (to maintain speed), proper device operation (to achieve accuracy), a
new architecture to handle bipolar and complex-valued data (with no loss in throughput), and
its ability to correct amplitude, phase and spatial errors (and the necessity for this). Section 2
reviews this system. It can easily be extended from a vector inner product to a 2-D matrix-
vector processor [ 1,2] and to achieve higher accuracy (using encoded data) [1,2]. Its ability
to perform 9-10 bit linear algebra operations has been quantified and demonstrated [2] and
various applications and extensions of the system have been noted [2]. The application we
consider is APAR. This is highlighted in Section 3, where we emphasize the DSD algorithm
solution and new theoretical results obtained for the use of an analog processor in a DSD
solution. These results are verified with our data in Section 4. Extensions of the algorithm and
system are then advanced in Section 4.6.

2. ARCHITECTURE

The basic architecture considered is shown in Figure 1. It uses N laser diodes (LDs) at P,
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imaged onto an acousto-optic (AO) cell at P2A. A reference arm in the system is provided in a

Mach-Zehnder architecture. The upper arm of this system provides the sum of the products of
the elements of two signals (vectors) sn(t) and a(t) elements (i.e., it forms the vector inner

product (VIP)). The heterodyne architecture shown provides amplitude VIP data output with

simple input signals, compatible output signals, plus increased dynamic range and linearity of

the system. For high accuracy, the LDs must be operated in an intensity mode with bias B. The

input signal to the LD is B+s(t), where s(t) is quadrature modulated. The AO cell Is amplitude
modulated with its input quadrature modulated. The heterodyne detected P3 out;,u.t Is the

complex-valued VIP of the LD and P2A data [1]. The system of Figure 2 is the matrix-vector

version of Figure 1 (the heterodyning section is omitted for simplicity).

3. APAR AND DSD

The basic APAR problem is to solve

Rw=s (1)

for the adaptive weights w given the noise (antenna or receiver noise) and interference

(directional jammers) covariance matrix R and the steering vector s. Iterative algorithms are

essential to achieve useful and stable results on an analog processor. The DSD algorithm
solution is

Wk+ 1 Wk - O(Rwk - S), (2)

where k indicates the iteration number and o, = V2"/Tr[R] is the acceleration parameter used.

This acceleration parameter value choice reduces solution errors due to time-varying noise in
the OLHNP (and is thus smaller than the conventional value used).

We have analyzed the stability of this algorithm (on an analog processor with B-bit

accuracy) and found that errors 1Ejj 52 - E in the representation of the elements of R require

that (for stability)

Kt (2 B, (3)

where 2B is the maximum linear dynamic range of the processor and

Kt = (5n) = Xmin = Tr[R]/Xmin' (3b)
n

This result is general for any similar iterative algorithm (but does not apply to DMI algorithms).
We note that Kt is related to the condition number K2 of R. Specifically, Kt = K2 + E >n/Xmnin
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FIGURE 2: 2-D matrix-vector version of the system of Figure 1.

(where the sum is over X -7: Xmax) and Kt has a maximum value of (N-1)K 2, where N is the
number of adaptive elements in the array. One can obtain (3) by considering the effect of
accuracy (B) on the positive-definite (positive eigenvector) property of R. Specifically, we
recall that with one dominant eigenvector (or jammer), K2 Kt. We also recall that the dominant
eigenvectors are associated with the jammers and the minimum eigenvectors with the antenna
noise. We also recall that as new jammers appear, more large eigenvectors occur and that R
must be normalized by multiplying its elements by N/Tr[R], so that R can be represented on
the processor. Since K2 does not change as strong jammers (with-approximately the same
>,max) are added, the change in Kt due to N/Tr[R] scaling reflects the harder problem being

I
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solved and the increased effect that the accuracy of the processor (B) will have on the result.

Golub [3] notes that the normalized root MSE is less than K2 times N times the error

element in the error matrix (this is consistent with our analysis and use of Kt rather than the

condition number K2 .

Thus, the condition number K2 alone does not describe the effect of processor accuracy
on performance, since the scaling of R results in smaller elements (components) in R. The
smaller components of R (in an eigenvector decomposition) correspond to the antenna noise
and the larger components correspond to the jammers (with large eigenvectors). Thus, we
expect a low accuracy processor to still achieve good jammer nulling (large eigenvectors) and
its error effects to be dominated by antenna noise. As the preferable global performance
measure, we use SNIR (signal to noise plus interference ratio). The SNIR obtained on a
converged processor (with B-bit accuracy) for a scenario described by a correlation
coefficient p (where 1-p is the correlation between s and the directions of the eigenvectors
associated with the jammers; thus, p is small for correlated signal and jammers, as arises in the
case of many jammers or in the case of mainbeam jammers) and by L (the number of
eigenvectors with Xi=kmin is related to the optimum SNIR (obtained with a Wiener solution of
(1) for B , co) by

r + K 2/3p. 2 2B

E[SNIRh=SNR4 1 . 2.. . 2. (4)°11L + L Ki /3p.2 - B  "

The errors in the direction of the eigenvectors associated with the jammers (large
eigenvectors) are small and the maximum errors occur in the direction of the small
eigenvectors. Thus, as L increases, more directions are allowed for noise and performance
degrades (since more eigenvectors have minimum or small eigenvalues, where errors are the
most). As the accuracy of the processor (B) decreases, so does performance, and as the
correlation of the size and jammers (p) increases, performance also degrades (since the
problem being solved becomes harder). Thus, (4) follows and in such cases, we expect lower
optimum SNIR and that the SNIR obtained with our processor will diverge further from the
optimum.

For the SNIR performance measure, we can note several regions and the performance
expected in each. If

Kt2< 22B . 3p/L, (5)

then E{SNIR) SNIRopt and there is no loss in performance. If

Kt2 > 2 2B . 3p/L, (6)
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then Iog[E{SNIR)] decreases linearly as K2ncreases. We also note that the worst-case is

Worst Case E{SNIR) a (1 /L)SNIRopt (7)

which is not necessarily a significant degradation as the maximum of L is N. For guaranteed
stability, we must satisfy (3), i.e.

Kt < 2 2B (8)

We note that useful solutions still result when (8) is not satisfied, i.e. solutions under unstable

conditions will be useful if we limit the number of iterations used. This is possible and the

choice of the number of iterations required is independent of the scenario and depends only on

the processor accuracy. This occurs since the rate of growth of the errors is not a function of

the actual eigenvectors. For the B=10 bit analog processor we consider, we employ 100
iterations (we note that the errors build at a known rate proportional to the amount of error in the
processor (which follows since the errors in the smallest eigenvector will be proportional to the

inverse of the accuracy of the processor). In cases when we cannot terminate the number of

iterations (i.e. when R and the scenario change more rapidly than the solution obtained), we
must satisfy the stability condition in (8). To guarantee stability, the preconditioing in Section
4.6 must be used. Otherwise, the 10-bit processor should always be terminated after 100
Iterations. This requires that we restart the processor and begin to calculate a new weight
vector. This is not attractive for dynamic R scenarios (Section 4.6).

A typical range of p value is 0.1 to a maximum of 1.0. Thus, we see how L, p and B affect our

performance measure. We note that stability is guaranteed for Kt < 2B , but that useful solutions

are obtained for Kt > 2B (if we terminate the iterations while the noise and interference Is low

and before the optical processor errors accumulate). It is possible to calculate the number of
iterations at which to terminate the DSD algorithm (independent of the scenario). For B = 10
bits, we find that 100 iterations is a reasonable termination point. We note that at this number of
iterations that the SNIR obtained will be close to the optimum when Kt ( 28, and that beyond

100 iterations we approach the asymptotic limit of E{SNIRJ in (4). The processor's MSE is thus
proportional to (1/Ai 2 ), where the square arises because of the MSE parameter used (and thus

the number (L) of eigenvectors with x i - 'mi n affects performance). We also note that the
worst case SNIR is only 1/L (a maximum of 1/(N-1)) of SNIRop t which can generally be

acceptable. Finally, we note that even if the stability condition in (3) is not satisfied, we can still
obtain a meaningful solution (if we terminate the iterations). This occurs since the optimum
solution diverges slowly (with iterations on new input data) as long as the Jammer scenario
does not change rapidly (i.e. if we can terminate the DSD iterations before the effect of antenna
noise or changing scenario increases).
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4. SIMULATION RESULTS

The effects of spatial gain errors are not of concern in our processor (due to correction).
Thus, we consider only additive time-varying P1, P2 and P3 errors and nonlinear P1-P3

electronic fixed errors.

4.1 ANTENNA SCENARIO

We consider a linear array of N=8 elements with spacings X/2. This yields the antenna
pattern shown in Figure 3 (for a boresight steering vector). Its mainbeam width Is 10. In the
scenarios we consider, all sources and jammers are referenced to a 0 dB antenna noise level.
For this antenna, we note that

Signal Gain = 1 OIogN2 = 1 01og64 = 18 dB. (9)

We use lOIog, since an increase of N2 in signal power is obtained from an N-element array.
Thus, the expected (and observed) signal power is 18 dB above the signal level. In the
scenarios we consider, the strength and number of jammers (and their location) are varied.

CD
9;' -.

-9 -45 0 45 90
Anale (degrees)

FIGURE 3: Antenna pattern.

4.2 STABLE SOLUTION (SCENARIO- i)

As scenario-i, we consider a single strong jammer (+20 dB at 25 ) with a source of +10dB
at 0 0. This results in a scenario with L = 7 (with one jammer, there is one large eigenvector and
the seven others are small) and p = 0.6 (this is a correlation 1 -p = 0.4 that is the mid-range value
of the correlation between the signal and the eigenvectors of the jammers). This occurs
because the jammer is located near the peak of the first sidelobe of the unadapted antenna
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pattern, else p would be larger. This scenario is also characterized by K2 = 800 and Kt a 808
w (these values are close since there is only one jammer eigenvector and this determines Xmax)

The condition in (8) is satisfied (since 228. 3p/L = 270,000 < Kt2 = 650,000). Thus, we expect

SNIR close to the optimum (19 dB, calculated from the B-.oo Wiener solution as the signal
output (28 dB) minus the noise plus interference output of 9dB, i.e. 28-9 r 19 dB = SNIRopt).
We note that SNIR - SNIRop t at 100 iterations (where we terminate) and that this occurs since

the jammer is nulled very rapidly (4 iterations) before processor error effects start to dominate
(at - 300 iterations, as seen from Figure 4 and as can be predicted by theory). From (4), we
find the asymptotic SNIR, SNIRasy - 14 dB at 100 iterations (in Figure 4), in agreement with the

theoretical value calculated from (4). For uncorrelated signals and jammers, SNIRopt will equal
the processing gain (18 dB).

40

30 .............. . . .
•....

-CD it MRTI-JAME -69

10 NOoSM U

ITERA;IoN WU"LR Ar-cie ( degrees)

(a) (b)

FIGURE 4: (a) Power vs. iteration number k and (b) Antenna pattern obtained after
k = 10, 100 and 1000 iterations for scenario- I (one strong jammer)

Figure 4a shows the signal, jammer and noise, and SNIR obta*ned. The optimum signal and
noise plus interference levels are indicated in the right of the figure. The antenna pattern at
different iterations (Figure 4b) shows a worse SNIR at 1000 iterations than at 100, but that the
jammer is still well-nulled. This indicates why we use SNIR as the preferable performance
measure rather than jammer null depth (which does not reflect noise suppression and signal
effects). If the iterations were allowed to continue, the slight rise in signal power due to
processor errors will become larger until processor errors have accumulated to the maximum
value (> 2000 iterations).

4.2 SNIR DEGRADATION (SCENARIO-2)

Our second scenario involves a mainbeam jammer (20 dB at 5 ° ). For this case p = 0.18

L!
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(highly correlated), L = 7 (many jammers and eigenvalues near Xmin), Kt = 808 and K2 a 800. In

this case, Kt2 >> 2
2B.3p/L and thus from (6), we expect significant degradation in E{SNIR) in

(7), i.e. (4) predicts an E{SNIR) of 8 dB or 6 dB less than the optimum SNIR of 14dB. This
agrees well (8 dB versus 10 dB) with the value obtained after 1000 iterations. We note that the
value obtained at 100 Iterations is the optimum SNIR (14 dB). These results follow as
expected, since a strong jammer corresponds to a large eigenvelue and will also have a large
gain (as shown in Figure 5 at k= 1) since this Is a mainlobe jammer. Thus, we expect slightly
more iterations than in scenario 1 (k=6 in Figure 5) to null this jammer. The jammer related
eigenvalue is large and produces the ringing seen in the solution for the signal strength. As
before, when we terminate at k=100 iterations, good performance (near the optimum) Is
obtained.

'S 1 T I40

3C -j0

SIGNAL -

.1 SIGNAL •

S 10-
JAMMER NOOSE V

,-- OP--IM -.,---w-
NOISE

fftAqION MW ITERATION NUHER

FIGURE 5: Power versus Iteration number k FIGURE 6: Power vs. Iteration number k
for scenario-2 (strong mainbeam for scenario-2 (Figure 5)

jammer, degraded SNIR). using a 6-bit processor.

4.3 LOW ACCURACY PROCESSOR (B = 6 vs. 10) INSUFFICIENT (SCENARIO-2)

Here (Figure 6) we rerun scenario-2 (Figure 5) using a lower accuracy (B = 6 vs. 10-bit)
processor. The results show that solution errors rapidly accumulate (with jammer ar d noise
error effects starting to increase at only 10 iterations). Thus, when operating with a reduced
accuracy processor, we must terminate the iterations at k z 10 (this number Is predictable,
Independent of the scenario) to achieve useful results (with - 5 dB less SNIR than one can
obtain with a 10-bit processor). As shown, higher (10 versus 6 bit) accuracy processors yield
considerably better performance.

4.4 MULTIPLE JAMMERS (SCENARIO-3)

This scenario considers 5 jammers (10 dB at 10', 16 dB at 20*, 10 dB at 30 ° , 16 dB at
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-450, and 10 dB at -70 ° ). This scenario results in p = 0.4, L = 3, and thus K2 = 400 and Kt = 880.

As In scenario-I, these signals and jammers are fairly correlated (p = 0.4), but L is small (L 3,
since the 5 jammers correspond to 5 of the 8 eigenvectors being large). The SNIRopt =-- 15 dB.
Since L Is small, we expect little degradation and from (4) we find E{SNIR) = 13 dB. This
scenario data (Figure 7) shows SNIR = 15 dB -- SNIRopt at 100 iterations (again this gives
nearly optimum performance) and SNIRasy = 12 dB at 1000 iterations (this is within 1 dB of the
predicted asymptotic SNIR).

40

20 - "" T 4" ' SIGN AL *
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-10
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FIGURE 7: Power vs. iteration number k for the multiple jammer scenario-3.

4.5 UNSTABLE SOLUTION (SCENARIO-4)

This scenario considers two very strong jammers (+30 dB at 10 and 40 dB at -30 . The
presence of a very strong jammer causes a large condition number (Kt = 88,000). This solution
is thus not guaranteed to be stable on our B = 10-bit system. The optimum SNIR (with B-oo)
possible is 32 dB. In the data obtained, we find a very good SNIR = 40-14 = 26 dB (but not the
maximum SNIROpt = 32 dB possible). In this case, the antenna noise is now below the jammer
level at 100 Iterations and thus does not appear in Figure 8 (and thus the optimum SNIR Is not
obtained, since the jammer is not sufficiently suppressed). The effect of processor accuracy
on stability is not apparent until 500 iterations. The increased noise in Figure 8 after 500
Iterations, Is due to the low eigenvectors associated with the antenna noise. The processor
accuracy Increases both the output antenna noise and the output jammer noise. The major
effect is due to the antenna noise (since it is associated with the small eigenvectors) and thus
the effect of processor errors does not appear until 500 iterations (since the antenna noise Is
now below the jammer noise). These data show that useful results are still obtained for a
problem that Is unstable with the given processor accuracy (B) if we terminate the iterations.
The SNIR obtained is not predicted by (4), but can be obtained from a new equation (without
the asymptotic approximation which results in Eq.(4) when Kt < 2B).
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4.6 PRECONDITIONING PERFORMANCE

One can Improve the asymptotic performance by controlling the condition number of the
problem. Two techniques to achieve this are ridge regression [4] and matrix Inversion
estimation [5-7]. Ridge regression involves adding a value B to the diagonals of R. This value
can be automatically determined [4]. However, although processor errors are reduced, the
optimal SNIR value obtained is scenario-dependent. It increases all elgenvalues by B, with
negligible effect on large and medium eigenvectors (and thus does not affect the suppression
of the jammers they correspond to). It increases the minimum eigenvectors and thus reduces
the condition number of R and thus the difficulty of the problem. This changes the problem
being solved, suppressing components due to the smaller eigenvalues R more than they should
be, but also significantly reduces processor errors associated with the same small eigenvalues.
Thus, with this technique, we can expect better SNIR even after a large number of iterations.
Our data in Figure 9 confirms this prediction. In this case, we added 1/500 to the diagonals of
the scaled R in scenario-4 (the value was automatically determined by the processor
accuracy). T'his reduced Kt from 88,000 to 500. The solution was now stable on a 10-bit

processor. In the results obtained (Figure 9), we find no increase in noise and jammer strength
at 1000 iterations (this shows a stable solution) but a slightly lower 12 versus 14 dB SNIR at
100 iterations than before preconditioning (Figure 8). Preconditioning allows one to use more
iterations. This is preferable in a changing scenario (where one does not want to use a fixed
number of iterations, stop and then restart the processor from zero). By preconditioning,
(Tr(R)/N)/500 has been added to all eigenvectors. This changes the scenario solved. It gives
negligible increase to the strong jammers and thus has negligib!e effect on their suppression. It
increases small eigenvectors (associated with antenna noise) and thus provides a stable
solution (with less SNIR than the optimum, with infinite accuracy).

Another approach to preconditioning is to obtain an estimate R- 1 of the inverse by
performing a limited number of iterations of the steepest descent algorithm for the LAEs R X - 1,
with final solution X = R-1. Premultiplying both sides of (1) by R-l, where R" 1 is the estimate

obtained of R 1 , reduces [5-7] the condition number of R to that of R- 1R. The major problem is
that new updates of R also have to be similarly preconditioned. Thus, the first preconditioning
algorithm is preferable.

5. SUMMARY AND CONCLUSION

The Lsefulness of a linear 10-bit optimum vector inner product or matrix-vector processor
solution of linear algebraic equations for adaptive phased array radar has been quantified. A
new analysis of the effects of processor accuracy on stability was noted and proven by
examples. A new SNIR performance measure equation (that includes the effects of accuracy
and scenario) relating the SNIR obtained to the optimum SNIR, was obtained and shown. Useful
solutions were shown to be obtainable using two distinct operating modes. The first mode runs
the processor for a fixed number of iterations which is a function of processor accuracy only.

a
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FIGURE 8: Power vs. iteration number k FIGURE 9: Power vs. iteration number for
for an unstable problem (scenario-4) the preconditioned scenario-4.

showing useful results if the
iterations are properly terminated.

This mode results in the highest output SNIR but requires restarting the processor after
termination. The second mode uses ridge-regression preconditioning to prevent processor
errors from accumulating after a large number of iterations, allowing the processor to
accommodate a rapidly changing environment at the cost of a small reduction in SNIR. The
amount of preconditioning is a function of processor accuracy and the scenario. Extensions to
solve ill-conditioned problems by terminating the number of iterations and by ridge regression
were described and demonstrated for a wide range of scenarios. In general, we would apply
preconditioning in all cases (since it helps far more than it can hurt). If the nearly optimum SNIR
Is desired (and the jammer scenario does not change rapidly), then we terminate the Iterations
at a number determined by the accuracy (B-bits) of the processor, and restart at K I 0 to
calculate the next set of weights.
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ABSTRACT

Many Adaptive Phased Array Radar (APAR) high-resolution spectral estimation techniques

are used to determine farfield signal power and location. Once this information is known.

placing nulls at these locations to cancel jammers can be accomplished through a proper

choice of antenna weights. The antenna weight and angular pattern domains are related

through Fourier transformation. To obtain a fine sampling in the angular domain to

accurately specify the desired nulls, it is required to extend the antenna aperture by padding it

with zeros. However, in the final weight vector applied to the antenna output, the

contribution of these extra elements must be zero since they do not correspond to available

antenna elements. This provides two sets of constraints on the solution, the set of desired

nulls in the aniular domain and the available aperture in the weight domain. A method of

finding a solution which matches constraints in both the time and frequency domains is the

Gerchberg-Saxton algorithm, which is often applied to image reconstruction. This paper will

describe the investigation into the behavior of this algorithm as applied to the discrete antenna

pattern synthesis case. The algorithm is presented in matrix/vector form and its transient and

steady state response is derived. To assist in this analysis, we introduce a new matrix

operator which greatly simplifies the required derivations. Computer simulation and numerical

evaluations of the analytical results are included to demonstrate the applicability of the

algorithm to pattern synthesis.
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I. INTRODUCTION

The general phased array radar signal environment is assumed to consist of I narrowband

sources in the farfield of an antenna with radar uavelength X. The K antenna elements are

assumed to be equally spaced along a line, separated by a distance d, with identical, unit,

isotropic responses. The physical center of the array is defined as the zero time lead/lag

point, or the zero phase reference point. This array geometry is illustrated in Figure I.

The signals from the antenna elements are comprised of random antenna noise V1k (n) and the

sum of the phase shifted signals pi(i) from the I narrowband sources in the antenna farfieldl:

d
(1k7) - I1k(1) + p (n7) exp(J2f sin (9,) (k- 1)), (I)

where T is the discrete sampling interval and e. is the angle of arrival of the ith signal. We

denote the i.jth element of a matrix x as (x).. and generalize a vector as a matrix with

column dimension of 1. Equation I assumes that the zero phase reference point 'f the array

corresponds to the kI antenna element. All angles are specified relative to the array

perpendicular.

For a single narrowband signal with instantaneous amplitude P and no noise, the received

signal at the Aih antenna element can be written as

d
(X)kl m' P exp(/2nsin 1O-Xk )), (2)

where I < k < K. The array output is the weighted sum of the received signals given by

y- wx (3)

where w is the weight vector and H denotes the Hermitian or conjugate transpose.

Substituting equation 2 into equation 3 yields
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K

= E )kexp(fI (0Y N)- l)(i-- 1)). (4)

Let us define a discrete direction q in terms of the continuous angle 0 as

d
q -, +(ROUND (sin (e )N) MOD A). (5)

The function ROUND 0 indicates a rounding of the parameter to the nearest integer value.

The operat)r (xMODN) specifies the non-negative integer remainder obtained by dividing x

by N. Tie range of q is thus I <q_<N. These bounds on the value of q are assumed to

be in force throughout this paper unless explicitly stated otherwise. The complex conjugate of

the array gain in direction q can now be written as

K
V 2n(9 )qt = (-p m , (W) k1 eXP(-N(q--1)(ke-1)). (6)

k- I

Equation 6 indicates that for narrowband signals. the complex conjugate of the angular

distribution of the gain g and weight w are related through a Discrete Fourier Transform

(DFT). The time variable in the DFT is equivalent to the antenna element number k shifted

by a constant. The variable q represents the discrete frequency variable in the DFT. The

dependence of the frequency variable on sin 0 demonstrates that a uniform sampling in q

implies a nonuniform sampling in e. The use of the complex conjugate of g is merely a

notational convenience which allows manipulation of the DFT and w instead of the Inverse

DFT and w

To place antenna response nulls in the jammer directions, we specify (g)q,,0 at the q

values corresponding to the jammer angles. The Inverse Fourier transform of g then yields

the weights w. However, due to the limit in the total number of antenna elements, K. the

angular resolution in q is poor. To improve this sampling, we can pad w with zeros so that

its new length is N and then take the transform. In the final weight vector applied to the
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antenna output, the contribution of these extra elements must be zero since they do not

correspond to available antenna elements. This provides two sets of constraints:

(g),,=0 for q corresponding to each jammer location, (7)

(W)kl-0 for k> K. (8)

The jammer location constraints in equation 7 can be written in terms of a set
CnIc,, 2, . . ,c } containing the values of q for which the gain is desired to be zero.

A method of finding a solution to miatch constraints in both the time and frequency

domains is a generalization of the Gerchberg-Saxton algorithm 2. It is known as the Error

Reduction algorithm and Fienup3 has provided a summary of its use in the retrieval of phase

information from intensity data. It has also been used for other applications where constraints

can be formulated in both domains such as amplitude reconstruction from phase information4

bandlimited signal and image extrapolation "  6 and the design of spatial filters that provide

invariance to 3-D distortions7 . The algorithm involves repeated FT's where the resulting

functions are forced to meet the constraints first in one domain and then in the other. A

block diagram of this algorithm is presented in Figure 2. Starting with the weight vector w,

it is first transformed into the angular gain domain by the DFT block. The angular

constraints are then applied to the gain vector followed by the inverse DFT to return to the

weight domain. Finally, the antenna constraints are imposed to complete one iteration of the

algorithm. The matrices performing the operations in each block are described more fully in

Section 3. The repetitive use of the Fourier transform operation in this algorithm is well-

suited to implementation on an optical system. The optical system previously proposed for use

in the extrapolation of bandlimited imagesR can be used here. In the paper, we will focus

our attention only on the algorithm itself and not its implementation.

The remainder of this paper describes the investigation into the behavior of this algorithm

as applied to the discrete case. We first set up the algorithm in matrix/vector form in

Section 2. Under specific investigation are the values of the weights (Section 3) and the



angular domain constraint error (Section 4) as functions of the number of iterations of this

algorithm. To assist in this analysis, we introduce a new matrix operator which greatly

simplifies the required derivations. Computer simulation and numerical evaluations of the

analytical results for sample APAR test scenarios are described in Section 5.

2. MATRIX/VECTOR FORMULATION

In this section, we first set up the iterative step shown in Figure 2 in matrix/vector form.

Each of the four functional blocks can be implemented through the pre-multiplication of a

vector by a matrix. The resulting vector is then passed to the next block in the cascade. In

describing the progression, we begin with the KxI weight vector w. The zero padded DFT

is obtained in two steps. The vector is first extended to length N through pre-multiplication

Tby the matrix . where T. is a KxN truncation matrix whose first K columns form a KxK

identity matrix and with zeros in the remaining columns. This is followed by a pre-

multiplication by the NxN DFT matrix DN. which transforms the vector into the angular

domain. The elements of this matrix are defined as

2n
(DN)ik w, exp(-j-N(i--l)(k-1)) 1 < ik< N. (9)

It should be noted that this DFT matrix is symmetric and that its inverse is given by

D- 1- D . In Figure 2 we denote the result of this operation as (g)' indicating that this is
N N N~

the complex conjugate of the gain vector before the angular constraints have been applied.

The next block implements the angular constraints. We define an NfN matrix S whichx~y

is zero everywhere except for the intersection of the row corresponding to the constraint X and

the column corresponding to the constraint y. The elements of S can thus be written

(S Xy)ik  u(i-k.x)u(k'y), (10)

where (i) is I if *0 and 0 otherwise. Starting with an NxN identity matrix, we subtract

S for each constraint x in the set C. A zero is thus placed along the diagonal which, whenA'g
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multiplied with the unconstrained gain vector, will zero the gain in that direction. This yields

the constrained gain vector g . Since we are setting the gain to zero or multiplying by one,

the fact that we are manipulating the conjugate of the gain vector does not affect the matching

of the constraints. The inverse transform is then applied, yielding an NxyI weight vector w'.

This step is performed by pre-multiplication by D '. The resulting unconstrained weight

vector matches the angular constraints, however to accomplish this it relies upon the use of

antenna signals which do not correspond to available antenna elements.

The final block (imposing the antenna constraints) truncates the Nxl vector w' to the

KxI weight vector w. This step uses the KxN matrix TK., which was defined In the

description of the first block for pre-multiplication. Once this step is completed, we have

completed the loop and have the new weight vector. Combining all of these blocks, we

define the KxK update matrix U as the product of all these transformations. The iterative

step shown in Figure 2 is then written as

w(/+l) - T-D(I- E S)D TTwM0) UW( (II)
X C 

where I indicates the iteration index. As I increases, it is desired that the matching of

constraints in the angular domain improves until g -(g )' in steady-state. We present an

analysis of this algorithm to determine its transient and steady-state properties in the next

section.

3. WEIGHT VECTOR ANALYSIS

In this section we analyze the weight vector updating equation to investigate the behavior

of the weight vector as the iterative algorithm is applied. The properties used in this

derivation are summarized in the Appendix. We may simplify the expression for U defined

by equation I I as
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U T D-1 (I- . S )D TT I- T - S.D DTT
K N x.x NK KDN x.xN K

xcC XtC

-I- MX. (12)
Xe C

A new KxK matrix M is defined as TD S D T The recursive relationship inX.X KDN .xNK

equation 11 for w(/ can be replaced with

w(l) - U w(O). (13)

where w(O) is the initial vector chosen to start .he iteration. We will now show that UI has

the following form:

U , I+ N1.a(.xy) 1 1+ 7 [NI. A()]. (14)
xc C ye C

In equation 14. we have introduced a new matrix operator Z1. This operator represents the

weighted sum of a set of matrices, in this case M * It and some of its relevant properties,

are described in the Appendix. The weighting function a(lxy) for the constraints x,y is

written in the matrix form A(O where the rows correspond to the x constraints and the

columns correspond to the y constraints. The major difference between this weighting

function and those used in the Appendix is that this function also varies with respect to the

iteration index i. To check the correspondence between the form in equation 14 and the

value of U defined in equation 12 we write,

xe CxeCyeC

Therefore U follows the form in equation 14 with a(l.x.y),,-;(.%-y) or A()-I.
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Next we examine the inductive step to verify that the product of these matrices is also of

the form of equation 14:

Ut ' t - UU - (1+ [M. -1]) (1+ [M. A(])

- I + F)[M, A()] + 7P[M. -I] + Y)(M, -I]F[M, A(0]. (16)

Using the multiplicative property of Z~presented in equation (A.15) to simplify the last term

yields

UI+  - I + P (M. A(O] + 7P[M. -I] + 7[M. -IBA()]. (17)

The matrix B is defined in equation (A.13) of the Appendix. The last three terms in

equation 17 can be combined through the use of the linearity property of EO presented in

equation (A.6):

Uk I - I+ 7[M. A(l)-I-BA(O] - I+ 7P[M. A(+1)]. (1)

This returns U'+ 1 to the form described in equation 14 and verifies that the choice of this

form is correct. The last two lines of equation 18 yield a recursive relationship for A(l).

This recursion requires the multiplication of two c maxXCmax matrices, rather than the

multiplication of two KxK matrices for each iteration required when evaluating U I directly

through successive multiplications by U. However, it is also possible to obtain a closed form

expression for A(/. From equation 18,

A(I+1) - A(l)-I-BA() - (I-B)A(O - I, (19)

with A(]) - -I, so that
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i-i

VA(/) - X(I- B)' " (-IB)) - 1 (11-(11-B)') - B-'(1- (I-B)'). (20)

i,,o

Note that the evaluation of equation 20 requires that B be nonsingular. If the eigenvalues of

B fall between zero and two, A() converges to

lim A(I) - -B. (21)

The steady-state weight vector can thus be written as,

lim w() - (I+ P [M, -B-'1])w(0). (22)

4. CONSTRAINT ERROR ANALYSIS

The results in Section 3 demonstrate that the iterative algorithm will converge to a final

value given proper conditioning of the matrix B. In Section 5 we numerically examine

several B matrices to confirm the convergence. In this section we investigate how well the

solution vector matches the constraints in the angular domain.

The constraint error vector is defined as

E(- (g*(O)I-g*(O) , D TTw( 0- (I- .S)DNTTw()
xtC

- DS D Tw(O. (23)x.x N Kxe C

This vector contains the gains that correspond to each of the constraints and zeros in all other

positions. When a correct solution is obtained, this vector should be zero. The two norm of

this vector provides a convenient measure of algorithm performance

I
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IIEQ)11' - EH (OQ - (WAH(OT DH S~) H S D T W)
K ICC Y C ycC N

-w(O)T (M-l( S ~Sy,)D T W(O (24)
xC CYC C Y

The fact that the product S ,S -O for x 0 y allows it to be replaced by S, Yi(x-y) and the

matrices T K and D' can also be brought inside the summations yielding

I1E*ll11 K DN Sxly N TK I(-)'*I

xt C% C C

-H H(0 7[NI I),w(O) (25)

Substituting equations 13 and 14 for A-(l yields

IIECO II' - [NI+7P(. A(OI)w(O))H 7P (NI, I] ((I+ FF[M. A(,)])wA(O))

=-AM- H (0)(I+ ( 7P M. A(I)])H) 3 [MNI] 1(I+ FP [NM. A(/)j)w(O). (26)

The conjugate transpose of EiPNI. A(i)] is replaced usin~g the re~cu!ts of eqvvion (A.10) to

yield

II(12- NH(O)(I+ FP [NI. AH(]) 7P [M, I 1(I+ [PI A(1)J)w(O). (27)

Using the multiplicative property of ZOpresented in equation (A. 15) to simplify the product of

the three interior terms yields



IIE(J) I'2 - MNw14(0)( 7P[M-. 1] + 70[M. IBA(t)]

+ 7P(M. A14(OBI] + FP[M. A1 (IBBA(I)] )w(O). (28)

The four additive terms can be combined through the use of the linearity property of XS

presented in equation (A.6):

IIE(01II - NWt (O) 7P [M. I+BA(I)+A (l)B+AH(I)BBA(O] w(0)

M ANw(0) F (M. (I+BA(I) (I+1BA(I)) vv(). (29)

The transition betueen the first and second line in equation 29 makes use of the property that

B-B3 for the matrix B defined in equation (A.13). The (I+BA(I)) term is evaluated next.

Substitution of A(I) from equation 20 yields

I+BA(A - It-B(-B 1 (I-(I-B))) - J-I+(I-B)1  (I- B) . (30)

The fact that the matrix specified by equation 30 is Hermitian allows the product

I1 H 21
((I-B1)) (1-B) to be written as (I- BI) The expression for the error becomes

IJE(011' - NwM"(0)701[N.(IB'() (31)

If the eigenvalues of B lie between zero and two, as required for convergence of equation 21.

the (I-B) 2 1 term approaches zero as I approaches infinity. The steady-state error is therefore,

lim IIE(/)112 . 0 (32)
1.40

which demonstrates that the algorithm w4ill converge to a solution which meets the specified
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constraints.

5. COMPUTER EVALUATIONS

In this section we present numerical evaluations of the analytical results derived in

Sections 3 and 4 using constraints obtained for a sample jammer scenario. The signal

example we present consists of an eight element array with dIX-0.5 and a 10dB desired

signal located at 0° . All powers (in dB) are with respect to the receiver noise power, 0dB.

There are six jammers: 20dB at 35*. 20dB at 400. 20dB at 45 ° , 20dB at -10% 30dB at

-60. and 30dB at -70 ° . The set of angular constraints corresponds to a desired gain of

zero in each of the jammer directions. while the gain in the direction of the desired signal is

left unconstrained. We only present the results from this test scenario, although several other

examples have been tested which yield similar results. These results have been omitted to

save space.

We begin by computing the eigenvalues of the matrix B defined in equation (A.13) for

different DFT lengths N. We use a wide range of Ars to demonstrate the algorithm's

dependence on the padded signal's length. For the eight element antenna array under

consideration, A-8. The IMSL 9 routine EIGCH was used to compute the eigenvalues and

they are presented to three significant digits in Table I. It should be noted that with N,-8

and A4-16. the resolution in the angular domain is so coarse that two of the constraints fall

in the same angular bin. The dimensionality of B is thus 5x5 instead of 6x6. Also, for

A8. the fact that the eigenvalues are all equal to one indicates that the algorithm converges

after one iteration. This can be explained through the fact that when A K, no truncation of

the weighted vector is required to meet the antenna constraints. However, it must be realized

that although the constraints in the discrete angular domain have be met. the coarse sampling

in angle may not provide an adequate null in the desired direction in the continuous domain.

As equation (A.13) indicates, the elements of B and thus its eigenvalues are roughly

proportional to i/N. Though this is not an exact relationship, the data presented in Table I

display this trend. As N is increased to improve the angular rtsolution, the eigenvalues

decrease causing a reduction in the rate at which the error term decays. Also note that all
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of the eigenvalues listed in Table 1 fall in the range (0,2) guaranteeing convergence.

VIt is also instructive to examine the transient characteristics of this algorithm. The ratio

of the maximum to minimum eigenvalues of the matrix B ranged from 1.OE+O when N-8 to

9.9E+2 when N-512. Plots are provided showing the variation of the constraint error, the

antenna gain in relevant directions, and the entire antenna gain pattcrn versus number of

iterations for several values of N. In all cases, the starting vector w(0) had elements equal to

I/K to provide unity gain for the desired signal located at zero degrees. In Figure 3 we plot

the constraint error of equation 31 versus the iteration index I for different values of N. The

constraint error goes to zero in a monotonic fashion for increasing I for all values of N, thus

confirming the convergence of this algorithm. This figure also indicates that larger N values

appear to require more number of iterations to achieve the same constraint error. However,

it must be remembered that the constraints used here are from the discrete angular gain

domain and are not equal to the desired constraints in the continuous domain. Thus the

constraint error does not provide a total picture of the nulling capabilities of the resulting

weight vectors. To clearly demonstrate this. it is instructive to plot the gain corresponding to

the desired location of the null. The gain versus the number of iterations for the jammer

located at 35 degrees is provided in Figure 4. The gains at the 6 jammer angles converge to

their final values within 100 iterations for Nw 16. This is vet another demonstration that this

algorithm converges. Higher values of N result in slower convergence, but they hold the

potential for deeper nulls and better satisfaction of the specified constraints. The non-

monotonic nature of the gain as a function of iteration index precludes us from guessing what

the asymptotic null depths would be, but inspection of Figure 4. indicates that higher N

values can lead to greater null depths. The gain in the direction of the desired signal, 0

degrees, is presented in Figure 5 and indicates that only 6 dB attenuation of the desired

signal occurs with this algorithm and N=-16. For larger values of N. the attenuation is even

less over the range of iterations shown.

To complete our discussion of this scenario, two plots showing the antenna gain versus

angle are presented in Figures 6 and 7. These plots show the directions of the desired
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constraints using a triangular symbol along the horizontal axis. Figure 6 shows the initial

antenna pattern and the patterns obtained after 10 and 10,000 iterations with ABI16. Figure 7

shows the same information when I,256. Comparing these two figures. we note that after

10,000 iterations, N,,256 results in more accurate null placement then when NA 16. This is

a direct consequence of the finer angular domain resolution achievable with the higher N

value. From Figure 7, we see that the initial antenna pattern does not have the nulls at the

desired locations. It is clear from the figure that the antenna pattern obtained after 10,000

iterations exhibits deeper nulls at the desired locations compared to the pattern after only 10

iterations.

6. CONCLUSIONS

This paper has described the application of the iterative error reduction algorithm to the

problem of calculating a weight vector which meets constraints specifying jammer locations and

antenna size. The repetitive nature of the Fourier transforms required to implement this

algorithm make it well suited to an optical processing system. A discrete analysis of this

technique's transient and steady-state properties has been presented. We have developed

criteria for convergence of this algorithm and have numerically demonstrated its convergence.

Although the analysis was provided for the discrete case, it is applicable to the continuous

optical Fourier transform when the number of antenna elements is large. The fact that 2-D

transforms are easily obtained with optics implies that this algorithm may be applied to

antennas of arbitrary planar geometry. A Discrete Fourier transform may also be obtained

optically through the use of masks and matrix operations to provide additional flexibility in the

implementation of this algorithm.
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8. APPENDIX: DETAILED DERIVATIONS

In this Appendix, we define the matrix operation ES as well as provide a list of its

properties that are used in the derivations of Section 2.

8.1. Definition of the Matrix Operation

The result of this operation is a matrix which is the weighted sum of a two dimensional

set of matrices. Symbolically this operation is written as

I CCy¢ C

The set of values over which the function is to be evaluated is denoted by C. For the

problem under consideration, this set consists of all of the locations where nulls are to be

placed, C-{c 1 . 2 . . . . ..  . These are specified in terms of samples in the angular

domain. The term M is an arbitrary set of matrices M which correspond to the

constraints x.yC C. The matrix F consists of elements specified by the scalar valued function

,4W .ix,y) evaluated at the constraints x.yvc C as indicated in Figure 8. The rows of F correspond

to the individual x constraints, while the columns correspond to the y constraints. Thus F is

a square matrix whose dimension is equal to the number of constraints in C

8.2. General Properties of the Matrix Operation

Transposition:

(M. F])T ( X M x.y)) T" - MT x.Y)
xCCycC x CycC '"

= (MT, F] (A.2)

Conjugation:

( [M, F])'- ( * M"A.y))- M f (Xy)
xeCycC x CycC

Si(M*. F)] (A.3)

J0
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Conjugate Transpose:

(7 [M. FI)H - ((7 [M, FJ)*) - F[T, F]

- FP (MH. F*] (A.4)

Scalar Multiplication:

Linearity:

ca 7(M. F] + b (NI. G]

- ,, X X M ftx.,) + b M ,.(..y)

xc Cyt C

[70 [, (ai + bG)] (A.6)

8.3. Special Properties for Specific Matrices

Let us now examine the matrices that comprise the set NI encountered in Section 2 more

specifically. The KxK matrix M . defined by equation 12, is

N1 -T DIS D TK (A.7)Xy K N ,yNK

It is useful to examine the elements of M directly through simplification of equation (A.7).

Using the definitions of the constituent matrices provided in Section 2, we can show that
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N N N N

'X.y ho ' Khi N ik %'y kI N IM KrnO

N N N N

I. ka. Ii nIIt I

-(DN ) hx(D N)Y

I 2n 2n
-(exp(j- *l- 1)(x- I )))( exp(-fi--(y- I )(o- 1)))N N ( N

I 2n

From equation (A.8). it can be seen that the conjugate transpose of M X'-is obtained by

interchanging x and y:

MM ) aM X. (A.9)

The relationship in equation (A.9) for the conjugate transpose of MNI can now be used to

refine the relationship in equation (A.4) for the conjugate transpose of ESUsing the fact that

M -' M Y .we can rewrite equation (A.4) as

7PI. FD)H - 7 [NIH. F)J h-l ( M~
x C C) C C

- M/."(XY) E NIJ')(y.x)
iiCCyeC XCC

0 (M. FM]. (A. 10)

The last major property to be investigated is a form involving the product of ES

operations:
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(M. F1 7 (M. G) - ( . M x,y))( , Mg(p,.q))
xCCycC pcCqtC

- E Z E M M . x,y)(p,.q). (A.1)
xe Cyt Cpt Cq¢ C

Let us now concentrate on the matrix product MXy M pA in equation (A.I,).

K

(MY M pA) H E (Mxy) k(1pAq)kl
k- I

V

I 2nE ((e(efxp- (- -N (00- I)(b-I-(-I( ))

kN IN

S2 n

N N

KI 2n2

N exp(-j--(k-1)(y-p))) - (M xq)il(y-p). (A.12)

In equation (A. 12), we have expanded (M,,y)ik and (Mpq)kl using equation (A.9), removed

common factors from the summation, and defined a function b(x,y) such that

K K K
I 2nKb(XY) exp(-j--(k-1)(x- Y)) E (M.'dk- E (M:,.)kk (A.13)

k-I k- i k- I

There is an implied dependence of b(xy) on K and N which is not explicitly shown since

these values remain constant throughout the adaptive cycle. The matrix product in equation
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(A.l 1) can thus be written as

Mx,yMp q - M qb(y.p). (A.14)

Equation (A. 14) can now be used to complete equation (A. 11) as follows:

i IM, F] [M. GI - Z E E Z M Xqb(y,p)ftx,y)g(p.q)
x CCye Cpc Cqc C

- Z . x,q)b(q,p)g(p.y) - 7[M, FBG]. (A. 15)
xeC:ycC qc Cpe C

The transition from line one to line two in equation (A.15) is obtained by interchanging y

and q. As with F and G, B is a matrix whose rows(columns) correspond to the function

b(x.,y) evaluated at different x(y) constraints in the set C. From the definition of b(x.y) in

equation (A.13), B is a Hermitian matrix. The important feature of the El:operator used

ANN& with the choice of M defined in equation (A.7) is that it represents a complex set of

operations succinctly. On this set of matrices, all the operations are mapped back to forms

where only the weighting function has changed, while the original set of matrices is

preserved. This property simplifies the task of solving for the response of the iterative

algorithm.
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N x, XI x x, x

8 S .OOE+O 1.01 .OOE+O .OOE+O .OOE+O
16 9.42E-1I 7.08E-1 5.OOE- I 2.92E-1I 5.79E-2

32 6.71 E- I 4.78E-l1 2.5 1E- I 7.75E-2 2.1715-2 6.1IIE4

64 3.2]E-1 2.34E- I 1.25E-1 5,87E-2 1. 12E-2 5.20E-4

128 1.69E-1 1. 15E- I 6.29E-2 2.OOE-2 7.97E-3 1.44E-4

256 S. 19E-2 5.83E-2 3.16E-2 1.2 1E-2 3.34E-3 1.09E-4

512 4.17E-2 2.88E-2 1.58E-2 5.59E-3 1.8OE.3 4.2 1E-5

1024 2.08E-2 1.45E-2 7.88E-3 2.78E-3 9.09E-4 2.17E-5

Table 1: Eigenvalues of B for the APAR Case Study
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Abstract

A high accuracy optical linear algebraic processor (OLAP) using the digital multiplication by analog
convolution (DMAC) algorithm is described for use in an efficient matrix inverse update algorithm with
speed and accuracy advantages. The solution of the parameters in the algorithm are addressed and the
advantages of optical over digital linear algebraic processors are advanced.

1 Introduction

The optical processor of Figure 1 is considered. It is well detailed [1). It operates on N-digit encoded
data. The digit representation for each of M numbers (a vector) is fed time-sequentially (one digit each TI)
to the M point modulators at P1. These point modulators are imaged onto M regions of a multi-channel
(AO) cell at P2. This cell is fed with the N digits of a second vector with one number in this vector
entered each T2 = NT to the N channels at P2 . The light leaving P2 is the product of the P, data and
the contents of P2. This is integrated vertically onto N detectors at P3 . The contents of P3 are shifted
by one digit each T, and the new data incident on P3 is added to the prior shifted P3 data. Each of the
M channels of the system produces the convolution of the data fed to one P point modulator and the
contents of the M regions of P2 . By the DMAC algorithm [2-4], this is the mixed-radix product of the two
numbers. It is easily converted to a binary representation by an output A/D, shift register, and adder.
In our system, separate A/Ds are present on each detector (to reduce A/D dynamic range requirements).
The full system performs M multiplies and additions every T2; i.e. an M-element vector inner product
on N-digit words each T2. The system can handle over N-digit accuracy by bit-partitioning [5,6] using
base B > 2 data (1]. It can handle vectors with dimensions larger than M by diagonal partitioning [1]. It
handles bipolar numbers by a negative base representation [7].

Section 2 reviews the matrix inverse update algorithm we use. Section 3 presents data on the use of
this algorithm on the processor of Figure 1 for adaptive phased array radar (APAR). Section 4 compares
this optical system to digital processors.

2 APAR Covariance Update Algorithm

In APAR, the weights w for a scenario described by a covariance matrix R and a steering vector s are
given by

w(k4+ )= l (k + i)s (1)

L1



where (k + 1) derotes the present output time sample used. We update the Rxx estimate as new data
enters

w ]Rxx(k + 1) = (1 - )RAxx(k) + fx'xT (2)

where 0 _< 0 < 1 is a weighting factor adjusted to give more weight (larger 3) to new data (this is used
when the environment changes rapidly) or more weight to prior data (if desired). Calculation of Axx is
time consuming, as is calculation of its inverse (this is required for every time sample vector x received at
the array). Thus we consider updating the prior R- 1 inverse directly using [8)

______ f [Ak1(k)x-(k +1)] [xTAR(k)] 3
+t l( 1) A- ( jR(k) H X(3-( 3) - (1 -- ' +x T(k + )R(k)x(k + 1) "

For each new x set of data received at the array elements at time (k + 1) we form the vector
p(k + 1) = A-1 (k)x*(k + 1). Then (3) is easily calculated as

1 {1 + ) fxx 1(k ) _ - P(k + 1)pff(k + 1) (4)

.XX,(k + (1-3) {(0 -( 3)/3 + x T (k + 1)p(k + 1)1 (4)

This algorithm is attractive since it is O[N 2] vs. O[N 3] for calculating the matrix inverse. This algorithm
does not require calculation of R nor direct calculation of its inverse. It also requires fewer bits of accuracy
than calculation of R - 1 from R.

3 Data Tests

We tested this algorithm and our processor for an N = 8 element linear antenna array with spacings
d = 2A between elements, a mainlobe width of ±30 and grating lobes at ±300. For all cases the signal
power is our 0dB reference point, the signal is at +100, and the antenna noise is -20dB (this is a typical
value for actual cases). The jammers (directional interference) vary in number and strength (Table 1). The
performance measure(s) we consider are SNIR (this is the best measure) vs. time sample k and null depth
(at k = 40). The condition number C varies up to 101 for the different scenarios (Amax values correspond
to jammers and are larger for stronger jammers, and A,inn and small values correspond to antenna noise).
Recall that R is normalized by N/Tr[R] to keep the maximum element one and E A,, = N. This reduces
Ai, and increases C when new jammers are present. With many jammers at the same dB level, all have
the same lower A,,, value but Ami, is reduced more and thus C increases.

We first consider the accuracy required. We use case 5 and plot SNIR vs. k with 13 = 0.2 and R.xx(0) =
1000I. The results for a 16-bit system (Figure 2a) show unstable oscillations. The 20- and 32-bit systems
(Figures 2b and 2c) show the same SNIR essentially equal to that obtained with standard double precision
R - 1 algorithms (Figure 2d). Thus our matrix inverse update algorithm requires only a 20-bit processor
(compared to 24-bits required with standard R - 1 algorithms). This is significant, since the calculations on
our optical system are then faster (since fewer bits are required) and the optical system is cheaper (since
fewer AO channels, detectors, and A/Ds are required). Figure 3 shows the power, SNIR, and antenna plots
obtained with a standard UDUH R - 1 algorithm (Figures 3a, 3c, and 3e) and our matrix inverse update
algorithm (Figures 3b, 3d, and 3f) with 3 = 0.2 and B = 20 bit accuracy for case 5 in Table 1.

The speed of convergence of our algorithm can be controlled by selecting 13. Smaller 3 = 0.05 values
weight new data samples less and larger 3 = 0.2 values weight new data samples more. Thus small (large)
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Table 1: Jammer Scenarios

Jammer Strengths (dB) Cond.
Cases 9 = -10 -5* 0* 0.50 90 No. Remarks

1 -10 800
2 0 -10 924 1-5 Jammers
3 0 0 -10 1045 Max.=OdB
4 0 0 0 -10 1133
5 0 921
6 0 0 1044 1-5 Jammers
7 0 0 0 1110 Max.=0dB
8 0 0 0 0 1677

9 10 8020
10 0 10 8050 1-5 Jammers
11 0 0 10 8060 Max.=1OdB
12 0 0 0 10 8814

13 0 0 0 - 0 1555 Mainbeam Jammer

14 0 0 0 40 - 8 x 106 Strong jammer

3 provides better (poorer) estimate of R and smoother (more erratic) changes with k. We expect faster

convergence with larger 0 but better SINIR and an antenna pattern near the optimum with smaller 0. We
also thus expect small j3 to allow use of fewer bits (B). Figures 4-8 show SNIR and the antenna pattern

' for different cases and 3 values. These also show that our algorithm performs well for various scenarios:
multiple jammers (Figure 4), jammers spaced only 0.50 apart (Figure 5), multiple jammers providing a
large condition number C = 8800 (Figure 6), multiple jammers with a mainbeam jammer (Figure 7), and
one very strong jammer out of four with a very large condition number (Figure 8). Figure 9 illustrates
the effect of a single blinking jammer at -10*. The jammer starts in the off state and remains off for the
first k = 20 samples. The jammer state then changes every 20 samples (in Figure 9, the jammer is on
during k = 20 -- 40 and during k = 60 - 80). This example illustrates the importance of using a 0 value

to reduce the effects of prior data samples. Uniform weighting is achieved by setting f = I/k, whereas
exponential weighting requires a constant value for 0 thus reducing the effects of prior data with respect
to the current data sample. Figures 9a and 9c show the SNIR and antenna pattern for uniform weighting,
and Figures 9b and 9d show the same plots for exponential weighting. Exponential weighting is seen to
respond more quickly to the blinking jammer.

4 Optical vs. Digital Linear Algebraic Processors

DMAC architectures have been stated [9) to be unattractive on the basis of the number of multiplies
per A/D conversion they perform. This ratio is typically less than one. We show that it can exceed one
for our processor and that this is not a valid measure. We then advance a preferable measure and show
that DMAC architectures improve faster than digital processors as equivalent technology advances occur
and that at present, the DMAC architecture exceeds the throughput of digital multipliers and adders.

3



low, Table 2: System performance for various cases using 50MHz A!Ds and a 16-channel AO cell to perform
16-bit multiplications

Base Digits A/D bits M T2McPM OperationsL NL Ad , (nsec) MOS A/Dny.n

2 16 5 31 320 97 0.12
4 8 9 56 160 350 0.88

10 62 388 0.97
8 6 9 10 120 83 0.28

12 83 692 2.31
16 4 9 2 80 25 0.13

12 18 225 1.13
15 125 1563 7.81

We first analyze the performance and requirements of the optical system. The system of Figure 1
performs M multiplies and M additions each T2, or MIT 2 operations per second where an operation is a
multiply and an addition. The number of A/D bits required for a base L system is log2 [M(L - 1)2]. Tables
2 and 3 list the performance of this system for 5f) and 100MHz A/Ds and a 16-channel AO cell for different
values of the base L, different numbers of point modulators M, and with the number NA of AO channels
required equal to the .L value given. All parameter values given are possible with present technology.
These tables show that performance above 3 GOPS is possible and that the number of operations per
A/D conversion can exceed one (thus negating earlier arguments [9)). We assumed T =20 and 10nsec,
respectively, and an AO cell with aperture time TA=lOpsec. The number of processing channels M is
bounded by the aperture time as

Al <TA/N (5)
and by the bit resolution Nd of the A/D as

Al < 2N"/(L - 1)2. (6)

The largest value for Al is desired for the maximum number of operations per second (OPS). This occurs
when

T A 2__ _o r_( 7)

T = NLTI(2n/L - 1 )2 or (7)

1( / _1)2 T 2d (8)
NL TA

We maximize the number of OPS by selecting NL logL 2" using (7).

The speed of both digital and optical systems can be increased through parallelism. For example the
multiplication of two 16-bit numbers can be achieved digitally using arrangements of 8-bit multipliers and
adders. If one 8-bit multiplier operates in time T, then various combinations of these multipliers and adders
can perform 16-bit multiplication in times ranging from T to 4T. However the speed increases linearly with
the number of components and the operations per second (OPS) per component is a constant (1/4T for the
above example) regardless of the architecture. Bit partitioning in DMAC also allows any desired accuracy
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Table 3: System performance for various cases using 100MIIz A/Ds and a 16-channel AO cell to perform
16-bit muliphcations

Base Digits 1A/D bits Al T2  NIOI Operations3
L NL Nd (nsec) MOPS A/D cony.
2 16 5 62 160 388 0.24
4 8 9 56 80 700 0.88

11 125 1563 1.95
8 6 9 10 60 167 0.28

12 83 1383 2.31
13 166 2787 4.61

16 4 9 2 40 50 0.13
10 4 100 0.25
12 18 450 1.13
15 145 3625 9.06

NL > NA to be achieved. As Tables 2 and 3 showed, one can optically achieve high accuracy with low
accuracy components (e.g., 16-bit multiplies with 5-bit A/Ds). Optically, there is a much better OPS per
component ratio than occurs digitally. Specifically, to digitally form zn-bit products using x-bit devices,
the OPS per component ratio is Ix 2 and thus decreases rapidly as the accuracy required increases. For

A example, if two digital systems each capable of a certain number of OPS were paralleled, the number of
OPS doubles but the number of OPS per component remains the same. Since a system's speed is the OPS
per component times the number of components, we now consider the OPS per component of digital and
optical systems, where a digital component is a multiplier and an optical component is an A/D (with the
same resolution assumed for both the multiplier and the A/D). This is a better measure than operations per
A/D conversion (9]. Since the technologies for parallel high-speed digital multipliers and A/D converters
are similar, assuming the same resolution for each is realistic and allows us to project performance for
improved device speeds (for both digital multipliers and A/D converters).

We now derive an expression for the OPS per component of the optical DMAC architecture of Figure 1.
DMAC improves faster than the linear increase with component speed that occurs digitally. To see this
recall that Figure 1 achieves M/T 2 OPS. Since T2 = NLT, the term 1/T increases linearly with device
speed. However, M also increases with device speed as in (5). Optimum performance occurs when M is
maximized, which occurs at the crossover point defined by (7). Figure 10 shows the maximum allowable .M
from (5) for different A/D speeds (the ascending curves) and for the A/D resolution Nd constraint on M
from (6) for different A/D resolutions (the descending curves). The intersections of these curves defines
the maximum allowable M, which is seen to increase as device speed or resolution improves. The base L
(shown along the horizontal axis) is determined by the crossover point (Figure 10 was produced for 16-bit
multiplications). Figure 11 shows the maximum M (when L is chosen as in Figure 10) as a function of
A/D speed for 9, 12, and 15-bit A/Ds. Since the system's overall OPS is M/A'LT1, we see that Al increases
with component speed (Figure 11) and that 1/TI increases linearly with component speed. Thus, the OPS
for this optical architecture increases nearly as the square of the component (A/D) speed, while the OPS
in a digital system increase only linearly with component (multiplier) speed.
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To compare optical and digital performance, we consider the ratio OPS/component of the optical system
divided by the OPS/component of the digital system. Figure 12 shows this data for 12, 24, and 36-bit

W' multiplications as a function of component speed for 12-bit devices (digital multipliers and A/D converters).
As seen, the optical system is preferable for component speeds above 1.5MHz (easily available now) and

the advantage of the optical system over the digital system becomes better as component speed increases.
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